期刊文献+

决策树分类ID3算法在网络教学平台学习策略推荐中的应用 被引量:2

Application of Decision Tree Classification ID3 Algorithm in Learning Strategy Recommendation of Network Teaching Platform
下载PDF
导出
摘要 目前各大高校基本都建成并应用了网络教学平台,其应用给广大学生带来很大的方便,学生可以对课堂上没有掌握的知识进行再学习,还可以随时选择自己喜欢的课程进行学习,从而使学生的学习效果得到了提升。然而,经调查统计目前平台智能化功能设计不够,各高校应用的教学平台只是把相关的教学资源展现给学生。不能实现根据学生的个性化需求,智能化的推荐学习策略和学习内容,每个学生的学习需求不能得到满足。文章主要研究了决策树分类ID3算法在教学平台中的应用,根据学生的注册信息及进入课程中心学习的记录,进行数据挖掘,形成分类规则。当学生在平台学习时,平台能够智能化的提供学习建议,满足不同学生的学习需求。 At present the major colleges and universities have basically completed and the applied the network teaching platform, which provide our students with great convenience. Students can not only learn knowledge, but also can always learn their favorite courses to, so students learning effect has been improved. However, through the investigation and statistics, the intelligent platform function design is currently inadequate. The application of teaching platform just show related teaching resources to the students and fail to meet the individual needs of students,. This paper mainly studies the application of decision tree classification algorithm in data mining, ID3 algorithm in the teaching platform.According to the students' registration information and the records of the course center, data mining, classification rules are formed. When the students enter the learning center of learning, can provide personalized learning strategies, so as to meet the needs of different levels of student 's study.
作者 卢小华
出处 《太原大学教育学院学报》 2016年第1期33-36,共4页 Journal of Education Institute of TAIYUAN University
基金 山西工商学院"网络学习平台的建设研究"(201415)
关键词 决策树分类算法 ID3算法 教学平台 学习策略 decision tree classification algorithm ID3 algorithm teaching platform learning strategy
  • 相关文献

参考文献6

二级参考文献17

  • 1纪希禹.数据挖掘技术应用实例[M].北京:机械工业出版社,2009. 被引量:44
  • 2HAN J W,KAMBER M.数据挖掘慨念与技术[M].范明.孟小峰,译北京:机械工业出版社,2007. 被引量:1
  • 3魏晓云.决策树分类方法研究[J].计算机系统应用,2007,16(9):42-45. 被引量:18
  • 4Brin, S., Motwani, R., and Silvemtein, C. (1997a). Beyond Market Baskets: Generalizing Association Rules to Correlations. In Proceedings of the ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 97), Pages 265-276. 被引量:1
  • 5Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997b). Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 97), Pages 265-276. 被引量:1
  • 6English, L P. (1999). Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing profits. John Wiley & Sons, New York, USA. 被引量:1
  • 7Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11):27-34. 被引量:1
  • 8Gersten, W., Wirth, R., and Arndt, D. (2000). Predictive Modeling in Automotive Direct Marketing: Tools, Experiences and Open Issues. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 00), Pages 398-406, Boston, MA USA. 被引量:1
  • 9Han, J., Pei, J., and Yin, Y. (2000). Mining Frequent Patterns without Candidate Generation. In Pmceedings of the 2000 ACM-SIGMOD International Confenerence on Management of Data, Dallas, Texas, USA. 被引量:1
  • 10Handley, S., Langley, P., and Rauscher, F. A. (1998). Learn ing to Predict the Duration of an Automobile Trip. In Proceedings of 1998 International Conference on KDD and Data Mining (KDD98), Pages 219-223, New York City, USA. 被引量:1

共引文献10

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部