期刊文献+

Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction 被引量:5

Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction
下载PDF
导出
摘要 Metal-free, heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation. In this study, high surface area mesoporous ordered sulphur doped carbon materials are obtained via one-pot hydrothermal synthesis of carbon/SBA-15 composite after removal of in-situ synthesized hard template SiO2. 2-thiophenecarboxy acid as sulphur source gives rise to sulphur doping level of 5.5 wt%. Comparing with pristine carbon, the sulphur doped mesoporous ordered carbon demonstrates improved electro-catalytic activity in the oxygen reduction reaction in alkaline solution. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. Metal-free, heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation. In this study, high surface area mesoporous ordered sulphur doped carbon materials are obtained via one-pot hydrothermal synthesis of carbon/SBA-15 composite after removal of in-situ synthesized hard template SiO2. 2-thiophenecarboxy acid as sulphur source gives rise to sulphur doping level of 5.5 wt%. Comparing with pristine carbon, the sulphur doped mesoporous ordered carbon demonstrates improved electro-catalytic activity in the oxygen reduction reaction in alkaline solution. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期566-570,共5页 能源化学(英文版)
基金 supported by the University of Electronic Science and Technology of China(Y02002010301080) the National Science Foundation of China(51502032) the financial support from Natural Science Foundation of Zhejiang Province(No.LQ14E020003)
关键词 Mesoporous ordered carbon Oxygen reduction reaction ELECTROCATALYST Heteroatom doping In-situ synthesis Mesoporous ordered carbon Oxygen reduction reaction Electrocatalyst Heteroatom doping In-situ synthesis
  • 相关文献

同被引文献31

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部