期刊文献+

面向高光谱影像分类的改进局部切空间排列降维 被引量:2

Dimensionality Reduction with Improved Local Tangent Space Alignment for Hyperspectral Imagery Classification
下载PDF
导出
摘要 提出多策略提升的局部切空间排列算法来解决常规局部切空间排列降维在高光谱影像分类中计算复杂度高的问题.通过引入随机映射来预先减少高光谱影像波段数,降低后续k-邻域和局部切空间构建的计算复杂度;采用递归兰索斯切分算法快速构建近似k-邻域,降低常规k-邻域构建的计算时间;采用快速近似奇异值分解算法提高全局排列矩阵的本征分解计算速度.利用两个不同的高光谱数据集,设计4组实验来分析多策略速度提升的局部切空间排列算法的计算性能和分类效果.实验证明,相比常规局部切空间排列方法,多策略提升的局部切空间排列方法损失约1%左右的总体分类精度却能够提高至少3倍的计算速度. The paper proposes a new version of local tangent space alignment(LTSA),named multi-strategies upgraded local tangent space alignment(MSU-LTSA),to solve the problem of computational complexity in dimensionality reduction of hyperspectral imagery(HSI)for classification. First,random projection is introduced into the new method to reduce the number of HSI bands. That decreases the computational complexity of k-nearest neighbors(KNNs) construction and local tangent space construction of each pixel. Then,the recursive lanczos bisection algorithm is utilized to construct the fast approximate KNNs graph and it reduces the computational time of regular approach. Finally, when finishing constructing the global alignment matrix,the new method uses the fast approximate singular value decomposition to promote the computational speed of the regular eigenvalue decomposition of global alignment matrix.With two different HSI datasets,four groups of experiments are designed to completely analyze and testify the performance of computation and classification for MSU-LTSA.The results show that MSU-LTSA speeds up LTSA at least 3 times whereas only degrading about 1% in its overall classification accuracy(OCA).
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期124-130,共7页 Journal of Tongji University:Natural Science
基金 国家“九七三”重点基础研究发展规划(2012CB957702) 教育部留学回国人员科研启动基金
关键词 多策略提升局部切空间排列 局部切空间排列 随机映射 降维 高光谱影像分类 multi-strategies upgraded local tangent space alignment local tangent space alignment random projection dimensionality reduction hyperspectral image classification
  • 相关文献

参考文献6

  • 1M. Prabhakar,Y.G. Prasad,M. Thirupathi,G. Sreedevi,B. Dharajothi,B. Venkateswarlu.Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J].Computers and Electronics in Agriculture.2011(2) 被引量:1
  • 2Elhadi Adam,Onisimo Mutanga,Denis Rugege.Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review[J].Wetlands Ecology and Management.2010(3) 被引量:1
  • 3Richard G. Baraniuk,Michael B. Wakin.Random Projections of Smooth Manifolds[J].Foundations of Computational Mathematics.2009(1) 被引量:1
  • 4Tianhao Zhang,Jie Yang,Deli Zhao,Xinliang Ge.Linear local tangent space alignment and application to face recognition[J].Neurocomputing.2007(7) 被引量:1
  • 5Xianfeng Chen,Timothy A. Warner,David J. Campagna.Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada[J].Remote Sensing of Environment.2007(3) 被引量:1
  • 6Sabine Chabrillat,Alexander F.H Goetz,Lisa Krosley,Harold W Olsen.Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution[J].Remote Sensing of Environment.2002(2) 被引量:1

同被引文献27

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部