摘要
Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematical model for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed and experimentally verified. The simulation results are consistent with the experiments in both the shapes of melt front and filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributions during the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductile iron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied to optimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defects prediction and for casting design optimization in the practical LFC production.
Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematical model for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed and experimentally verified. The simulation results are consistent with the experiments in both the shapes of melt front and filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributions during the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductile iron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied to optimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defects prediction and for casting design optimization in the practical LFC production.
基金
supported by the Significant Project of the National Natural Science Foundation of China(59990470-3)
the Significant Fundamental Research Development&Planning of China(G2000067208-3).