期刊文献+

散乱数据点的细分曲面重建算法及实现 被引量:11

Surface Reconstruction from Unorganized Points Using Subdivision Techniques
下载PDF
导出
摘要 提出一种对海量散乱数据根据给定精度拟合出无需裁剪和拼接的、反映细节特征的、分片光滑的细分曲面算法 该算法的核心是基于细分的局部特性 ,通过对有特征的细分控制网格极限位置分析 ,按照拟合曲面与数据点的距离误差最小原则 ,对细分曲面控制网格循环进行调整、优化、特征识别、自适应细分等过程 ,使得细分曲面不断地逼近原始数据 实例表明 :该算法不仅具有高效性、稳定性 。 A new approach to reconstruct subdivision surfaces from unorganized points of arbitrary topology is proposed. Reconstructed surfaces are piecewise smooth subdivision surfaces without trimming and sewing. The main idea is to utilize the local characteristic of Loop subdivision to adjust, optimize and adaptive subdivide control mesh to let the subdivision surface fit the data points. Examples demonstrated that the algorithm is efficient and robust, can effectively preserve the detail characteristics of data points.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第10期1287-1292,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 高等学校优秀青年教师教学科研奖励计划 江苏省青年科研基金(BQ2 0 0 0 0 0 4)资助
关键词 散乱数据点 细分曲面重建算法 逆向工程 CAD subdivision surface adaptive subdivision reverse engineering unorganized points surface fitting
  • 相关文献

参考文献12

  • 1Váredy T, Martin R R, Cox J. Reverse engineering of geometric models-An introduction [J]. Computer-Aided Design, 1997, 29(4) : 255-269. 被引量:1
  • 2DeRose T, Kass M, Tien T. Subdivision surface in character animation [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. New York: ACM. 被引量:1
  • 3Loop C. Smooth subdivision surfaces based on triangles[D].Utah: University of Utah, 1987. 被引量:1
  • 4Loop C. Triangle mesh subdivision with bounded curvature and the convex hull property [R]. Washington: Microsoft Corporation, 2001. 被引量:1
  • 5Zorin D. Overview of subdivision schemes [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. New York: ACM Press, 2000. 65-84. 被引量:1
  • 6Hoppe H, DeRose T, Duchamp T, et al. Piecewise smooth surface construction [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. Orlando, Florida: ACM Press, 1994. 295-302. 被引量:1
  • 7Suzuki H, Takeuchi S, Kanai T. Subdivision surface fitting to a range of points [A]. In: Proceedings of the 7th Pacific Conference on Computer Graphics and applications, Seoul, Korea, 1999. 158-167. 被引量:1
  • 8Umlauf G. Analyzing the characteristic map of triangular subdivision schemes[J]. Constructive Approximation, 2000,16(1): 145-155. 被引量:1
  • 9Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces [J]. Computer Graphics, 1993,27(3) : 35-44. 被引量:1
  • 10Schweitzer J E. Analysis and application of subdivision surfaces[D]. Washington: University of Washington, 1996. 被引量:1

同被引文献90

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部