期刊文献+

双调和算子的基本解

Fundamental solutions for biharmonic operators
下载PDF
导出
摘要 导出双调和算子△2-λ的基本解,并证明双调和算子的基本解可以由RN中含复系数的Helmholtz方程的解来表出.同时,还给出了双调和算子的基本解在无穷远点和零点处的渐进展开式. We deduce the fundamental solutions for the biharmonic operators △2-λ. It will be shown that the fundamental solutions of biharmonic operators can be expressed in terms of the fundamental solutions of the Helmholtz equation in RN with complex coefficient. The asymptotic representation of the fundamental solutions for the biharmonic operators is given.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期273-276,289,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10171036).
关键词 双调和算子 基本解 渐近展开式 biharmonic operators fundamental solutions asymptotic representation
  • 相关文献

参考文献6

  • 1Chou K S, Geng D. Asymptotics of positive solutions for a biharmonic equation involving critical exponent[J]. Differential Integral Equations, 2000,13(7-9): 921-940. 被引量:1
  • 2Deng Yinbin, Li Yi. Regularity and exponential decay of the solutions for nonlinear biharmonic equations in R^N [J]. Preprint. 被引量:1
  • 3Lebedev N N. Special Functions and Their Applications [M]. Englewood Cliffs; Prentice-Hall, 1965. 被引量:1
  • 4Leis R. Initial-boundary Value Problems in Mathematical Physics ['M'I. Chichester- New York- Brisbane- Toronto-Singapore ;John Wiley and Sons, 1986. 被引量:1
  • 5Titchmarsh E C. Introduction to the Theory of Fourier Integrals[M]. Oxford:Oxford University Press, 1937. 被引量:1
  • 6Stuart C A. An introduction to elliptic equations on R^N [J]. Nonlinear Functional Analysis and Applications to Differential Equations, 1998 : 237 - 285. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部