期刊文献+

嵌入定理与代数数域上的大筛法

IMBEDDING THEOREMS AND THE LARGE SIEVE METHOD IN ALGEBRAIC NUMBER FIELDS
原文传递
导出
摘要 本文把数理方程研究中常用的嵌入定理稍作推广,应用到代数数域上来,并把[4]中第四章的定理4.2和[1,5]中的均值定理推广到代数数域上. 为此,先介绍一些符号与约定,基本上采自[2]. 设K为-n次代数数域,按通常的记号,记作n=r_1+2r_2.以Z_k表K中的整数环. 1.设为一理想,如α,β∈Z_k,|(α-β),则记α≡β(mod ).按此可把K中的整数分类,其类数为N. In this paper we give a slight generalization of the imbedding theorem proved in [3]. And then we apply it to algebraic number fields, we obtaining a large sieve inequality. Finally we generalize to algebraic number fields the mean value theorem in [1] where with it we proved the Chen's theorem on Goldbaeh problem.
作者 丁夏畦
出处 《数学学报(中文版)》 1979年第4期448-458,共11页 Acta Mathematica Sinica:Chinese Series
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部