摘要
本文考虑了一类SI传染病模型,并引入了扩散和时滞的影响,得到一类捕食型的反应扩散模型.运用线性化方法得到了该系统平衡点的稳定性,由此指出了控制传染病传播的有效措施.然后运用上下解单调迭代的方法证明了行波解的存在性.
This paper is concerned with a SI epidemic model involves diffusion influence and time delay,in fact,the epidemic model that we consider is a predator-prey reaction-diffusion model.Using the method of linearization,we obtain the stability of equilibria,and then conclude two measures which can control the infection coincide with the practice.By the monotone iteration scheme of upper and lower solutions,we establish the existence of traveUng wave solutions for the predator-prey reaction-diffusion model.
出处
《生物数学学报》
2014年第3期443-447,共5页
Journal of Biomathematics
基金
Supported by the Projects of HBEU grant No.Z2013018
关键词
行波解
平衡点
时滞
反应扩散方程
Traveling wave solutions
Equilibrium
Time delay
Reaction-diffusion equation