摘要
为了满足停车场多方利益需求,实现区域内泊位占用率均衡的目标,提出了面向不同泊位占用率水平的动态定价策略.基于车主停车行为特征测算泊位综合效用及车主选择泊位概率,在预测停车场泊位需求的基础上构建定价模型,确定了区域内不同占用率水平下的目标函数,最终引入遗传算法进行优化求解.结果表明:利用构建的动态定价模型能够有效调整区域内泊位占用率水平,实现不同水平下的多方利益最大化,提高社会效益.
The increasing number of cars leads to parking shortage growing,shared parking lots as an effective measure to alleviate parking problem has been widely studied.This paper proposes a dynamic pricing strategy for different occupancy levels to realize balanced occupancy and various interests of the parking lots.Based on vehicle parking behavior characteristics,we calculate the comprehensive utility and the probability of driver choosing parking.We also build the pricing model on the basis of predicting parking demand,analyze the objective function at different occupancy levels in the region,finally introduce the genetic algorithm to optimize the problem.The results demonstrate that the dynamic pricing model can effectively adjust occupancy level in the region,maximize the interests of different levels and improve the social benefits.
作者
高慧杰
陈冬林
王诚坤
Gao Huijie;Chen Donglin;Wang Chengkun(Institution of E-Business,Wuhan University of Technology,Wuhan 430070,China)
出处
《数学的实践与认识》
北大核心
2019年第5期48-58,共11页
Mathematics in Practice and Theory
基金
国家自然科学基金(71702138)
关键词
泊位共享
占用率水平
动态定价
遗传算法
shared parking lots
occupancy level
dynamic pricing strategy
genetic algorithm