期刊文献+

一种基于深度卷积网络的鲁棒头部姿态估计方法 被引量:5

Robust Head Pose Estimation Based on Deep Convolution Neural Networks
下载PDF
导出
摘要 针对头部姿态估计方法受特征提取限制导致姿态估计效果不佳的问题,提出使用深度卷积网络自动学习有效特征并进行分类的头部姿态估计方法。首先,利用DCNN非线性映射和自动提取图像结构信息的能力,设计一个深度卷积网络实现对姿态鲁棒特征的提取;然后,将提取的特征用于分类器训练并最终实现头部姿态估计。在Pointing’04和Face Pix数据库上的测试结果表明,本文设计的深度卷积网络能有效地进行特征学习,避免了人工设计特征的不足,与现有的基于人工设计特征方法相比,本文方法在2个数据库上达到的预测平均绝对误差分别为4.05°和2.04°,充分证实了本文算法的稳定性和可靠性。 In order to improve the estimation accuracy,a new method based on deep convolutional neural networks is proposed to automatically learn effective features and conduct classification for head pose estimation. First,a DCNN was designed and fulfilled,making use of DCNN's capability of nonlinear mapping and feature representation learning. Then,a classifier was trained based on the learned feature representations for the purpose of head pose estimation. Experimental results on the Pointing'04 and Face Pix databases showed that the designed DCNN could learn features automatically and efficiently for effective head pose estimation. The mean absolute errors on the two databases were 4. 05° and 2. 24°,respectively. The proposed DCNN based method outperforms existing hand-craft feature based methods in terms of both estimation accuracy and robustness.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第S1期163-169,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家重大科学仪器设备开发专项资助项目(2013YQ490879) 国家自然科学基金资助项目(61202160)
关键词 深度卷积网络 姿态估计 姿态分类 deep convolutional neural networks head pose estimation classification
  • 相关文献

参考文献1

二级参考文献59

  • 1Valenti R, Sebe N, Gevers T. Combining Head Pose and Eye Location Information for Gaze Estimation. IEEE Trans on Image Processing, 2012, 21(2): 802-815. 被引量:1
  • 2Murphy-Chutorian E, Trivedi M M. Head Pose Estimation in Computer Vision: A Survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 ( 4 ) : 607 -626. 被引量:1
  • 3Kuipers J B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton, USA: Princeton University Press, 2002. 被引量:1
  • 4Deymer D J. Face Recognition under Varying Pose / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, USA, 1994: 756-761. 被引量:1
  • 5Ng J, Gong S. Composite Support Vector Machines for Detection of Faces across Views and Pose Estimation. Image and Vision Computing, 2002, 20(5/6): 359-368. 被引量:1
  • 6Ng J, Gong S. Multi-View Face Detection and Pose Estimation Using a Composite Support Vector Machine across the View Sphere / / Proc of the International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. Corfu, Greece, 1999: 14-21. 被引量:1
  • 7Sherrah J, Gong S, Ong E J. Understanding Pose Discrimination in Similarity Space / / Proc of the 10th British Machine Vision Conference. Nottingham, UK, 1999: 523-532. 被引量:1
  • 8Sherrah J, Gong S, Ong E J. Face Distributions in Similarity Space under Varying Head Pose. Image and Vision Computing, 2001, 19 (12) : 807-819. 被引量:1
  • 9Breitenstein M D, Kuettel D, Weise T, et al, Real-Time Face Pose Estimation from Single Range Images. / / Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA,2008. DOI:IO.1109/CVPR. 2008.4587807. 被引量:1
  • 10Padeleris P, Zabulis X, Argyros A A. Head Pose Estimation on Depth Data Based on Particle Swarm Optimization / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, USA, 2012: 42-49. 被引量:1

共引文献16

同被引文献28

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部