期刊文献+

一种自适应改进曲率扩散超声图像滤波方法 被引量:1

Ultrasound Image Filtering Using Adaptive Modified Curvature Diffusion Equation
下载PDF
导出
摘要 针对图像尤其是医学超声图像的边缘模糊或者缺失对图像进一步处理带来的影响,同时由于传统改进曲率扩散方程无法自适应及迭代时间长,提出一种结合高斯滤波的参数自适应的改进曲率扩散方法,并且使用统计学中的绝对偏差中值自动调整梯度阈值参数。该方法能在保留改进曲率扩散方程去噪能力的同时有效地保留图像边缘细节信息,同时减少滤波过程中的迭代次数,从时间复杂度的方面提高了方法效率。另外,自适应梯度阈值的采用进一步提高了改进曲率扩散方程保留图像细节信息的能力。实验结果表明,结合高斯滤波的参数自适应改进曲率扩散方法继承了改进曲率扩散的优点,同时又减少了人工干预,提高了去噪效率。 Blurred or missing edges in image,especially ultrasound image could affect further processing,and traditional modified curvature diffusion equation's parameters cannot be adaptive and iteration time is long. For these reasons,an adaptive modified curvature diffusion equation combined with Gaussian filter was proposed and median absolute deviation in robust statistics was used to adjust the gradient magnitude threshold parameter automatically. This method can preserve image details effectively while remain MCDE's capacity for removing noise,and lower the time of iterations during filtering which improves efficiency in terms of time complexity. Moreover,MCDE's ability of preserving image details is further enhanced by applying adaptive gradient magnitude threshold. Experiments proved that this method inherits the advantages of MCDE,reduces human intervention and improves the efficiency of denoising.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第S2期130-135,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 四川省科技支撑计划资助项目(2012GZ0106)
关键词 改进曲率扩散方程 绝对偏差中值 自适应梯度阈值 超声图像去噪 modified curvature diffusion equation median absolute deviation adaptive gradient magnitude threshold ultrasound image denoising
  • 相关文献

参考文献12

  • 1Chourmouzios Tsiotsios,Maria Petrou.On the choice of the parameters for anisotropic diffusion in image processing[J]. Pattern Recognition . 2012 被引量:1
  • 2Jinhua Yu,Yuanyuan Wang,Yuzhong Shen.Noise reduction and edge detection via kernel anisotropic diffusion[J]. Pattern Recognition Letters . 2008 (10) 被引量:2
  • 3Abbott J G,Thurstone F L.Acoustic speckle: theory and experimental analysis. Ultrasonic Imaging . 1979 被引量:1
  • 4You YL,Kaveh M.Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing . 2000 被引量:2
  • 5Catte F,Lions PL,Morel JM,et al.Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis . 1992 被引量:2
  • 6Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990 被引量:3
  • 7Gilboa G,Sochen N,Zeevi YY.Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing . 2002 被引量:1
  • 8Ling Jian,Bovik Alan C.Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Transactions on Medical Imaging . 2002 被引量:1
  • 9Finn, S.,Glavin, M.,Jones, E.Echocardiographic speckle reduction comparison. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on . 2011 被引量:1
  • 10Black MJ,Sapiro G,Marimont DH,et al.Robust anisotropic diffusion. IEEE Transactions on Image Processing . 1998 被引量:1

共引文献5

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部