期刊文献+

Periodic Eigenvalues of One-Dimensional p-Laplacian with Indefinite Weights

Periodic Eigenvalues of One-Dimensional p-Laplacian with Indefinite Weights
原文传递
导出
摘要 Rotation numbers are used in this paper to study the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic weight which changes sign. The analysis proves that for any nonnegative integer n, ρ -1(n/2) is the union of two closed intervals, one of which lies in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] + and the other in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] -, and the endpoints of these intervals yield the corresponding periodic and anti-periodic eigenvalues. Rotation numbers are used in this paper to study the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic weight which changes sign. The analysis proves that for any nonnegative integer n, ρ -1(n/2) is the union of two closed intervals, one of which lies in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] + and the other in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] -, and the endpoints of these intervals yield the corresponding periodic and anti-periodic eigenvalues.
作者 晏平 章梅荣
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第5期533-536,共4页 清华大学学报(自然科学版(英文版)
基金 Supported by the National Basic Research PrioritiesProgram me of China (No.G19990 75 10 8) and theTRAPOYT of the Ministry of Education of China
关键词 nonlinear eigenvalue P-LAPLACIAN p-cosine p-sine rotation number nonlinear eigenvalue p-Laplacian p-cosine p-sine rotation number
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部