摘要
§1.引言
在求解偏微分方程的数值模拟中,主要有以下几种方法:有限差分法、有限元方法、有限分析法、谱方法等.
随着有限元方法成熟研究和谱方法[1]的飞速发展,Patera(1984年)提出了谱元方法[2].由于谱方法的逼近函数是在整个求解区域进行,其特点是精度高,但对复杂的求解区域逼近函数的选取很困难,因此限制了它的应用.
An isoparametric spectral element method that combines the idea of the isoparametric element in finite element methods with spectral element methods is proposed. The computational domain is broken up into curvilinear quadrangular elements to approach boundaries more specifically and solve the differential equation in complex geometry. By this means both the Helmholtz equations with rectangular geometry and the Poisson's equations with annular geometry those have analytical solutions are solved. The predicted results are in excellent agreement with the analytical solutions.
出处
《数值计算与计算机应用》
CSCD
北大核心
2003年第3期201-206,共6页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金 59776006