摘要
本文对抛物型偏微分方程的初边值问题:=f(x,t),0<x<1,0<t≤T,u(x,0)=g(x),u(0,t)=u(1,t)=0,给出了变分——差分方程,并证明了变分——差分方程的解关于ε一致收敛于原问题的解。
In this paper,we give the variational-difference equation for the initial and boundary value problem of the parabolic partial differential equation -u/t+ε~2u/x^2+au/x-bu=f(x,t),0<x<1,0<t≤T,u(x,0)=g(x),u(0,t)=u(1,t)=0, and prove that its solution uniformly converges to that of the original problem.
出处
《南京大学学报(自然科学版)》
CAS
CSCD
1992年第2期210-218,共9页
Journal of Nanjing University(Natural Science)
关键词
抛物型方程
变分-差分法
一致收敛
singular perturbation, variational-difference,uniform convergence