期刊文献+

与顶点C-划分有关的上可嵌入图类 被引量:3

Classes of Upper-embeddable Graphs in Terms of C-partition of Vertices Set
下载PDF
导出
摘要 图的顶点C划分是指 :G的顶点划分 {V1,V2 ,… ,Vk} ,使得每个G[Vi]为多重完全图 (1≤i≤k) .结合图的顶点C划分的条件 ,确定了一类点的度在modulo 4下值为 0或 3的上可嵌入图类 ,综合已有结果 ,较完整地刻画了这类图的上可嵌入情况 . Let G be a graph,if there exists a partition {V 1,V 2,…,V k} of V(G) satisfying G[V i] a multiple complete graph for any i∈[1,k],then G has a C-partition.Combined with the condition of C-partition,it gives classes of upper-embeddable graphs whose value of degree of each vertex is 0 or 3,respectively,under modulo 4.Based on the known results,it characterizes entirely the upper embeddability of such classes of graphs.
作者 盛秀艳
出处 《河北师范大学学报(自然科学版)》 CAS 2003年第5期438-440,共3页 Journal of Hebei Normal University:Natural Science
基金 重庆市教育委员会自然科学基金资助项目 ( 0 10 2 0 4)
关键词 上可嵌入图 顶点C-划分 多重完全图 最大亏格 BETTI亏数 图论 上可嵌入性 graph Betti deficiency number upper-embeddability maximum genus
  • 相关文献

参考文献9

二级参考文献13

共引文献48

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部