期刊文献+

电子储存环中插入元件的非线性束流动力学的Lie代数方法

Study of Insertion Device's Influence on Nonlinear Beam Dynamics in Electron Storage Ring Using Lie Algebra
原文传递
导出
摘要 介绍了用能保证哈密顿系统“辛”性质的Lie映射方法来研究电子储存环中的插入元件对束流动力学的影响 .并以此方法对合肥光源中将要安装的波荡器UD - In designing the 3rd generation synchrotron radiation light source, many long, and dispersion free straight sections are left for installing undulators to produce coherent radiation. For the damping ring used as pre-injector of next generation linear collider, many wigglers are used to increase radiation damping rate. So it is important to understand those Insertion devices'(ID) influence on beam dynamics in design and optimization stage. This paper introduces the study of insertion device's influence on beam dynamics in electron storage ring using the symplectic Lie mapping. Firstly the Hamiltonian of charged particle's motion along ID axis is given, then two methods are adopted to analyse ID's influence on beam dynamics. One method is expanding Hamiltonian to 4th order Taylor series, then all kinds of multipole components (till to octupole) can be obtained; another is constructing a second order symmetrical, symplectic integrator using Lie map product by similar transformation directly. The simulation results show those two methods are consistent. The primary results of influence on beam dynamics of UD-1, a new undulator which will be installed in Hefei Light Source storage ring soon, are also given. The tune-shift and decrease of dynamic aperture caused by UD-1 can be found in simulation results.
出处 《高能物理与核物理》 CSCD 北大核心 2003年第9期819-823,共5页 High Energy Physics and Nuclear Physics
基金 国家重大科学工程 (NSRL二期工程 )基金 中国科学院创新工程支持项目资助~~
关键词 电子储存环 插入元件 非线性束流动力学 LIE代数 Lie映射 哈密顿系统 波荡器 electron storage ring, insertion device, Hamiltonian system, Lie algebra and Lie mapping
  • 相关文献

参考文献2

二级参考文献7

  • 1徐建铭,高能物理与核物理,1988年,12卷,513页 被引量:1
  • 2Xu Qing,Nucl Instr Meth A,1987年,253卷,173页 被引量:1
  • 3Xu Qing,Nucl Instr Meth A,1986年,251卷,172页 被引量:1
  • 4刘茂三,高能物理与核物理,1982年,6卷,764页 被引量:1
  • 5林其壬,磁路设计原理 被引量:1
  • 6Goldstein H. Classical Mechanics,2nd ed. Massachusetts:Addison-Wesley,1980. 378-418 被引量:1
  • 7Dragt A J,Finn J M. Lie Series and Invariant Functions for Analytic Symplectic Maps. J Math Phys., 1976,17, 12) :2215 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部