期刊文献+

主成分分析结合神经网络技术在焊接质量控制中的应用 被引量:13

Principal component analysis based artificial neural networks for arc welding quality control
下载PDF
导出
摘要 介绍了主成分分析方法及人工神经网络技术在相关因素分析和质量控制的建模与估计中的应用。以大电流MAG焊熔宽控制为例 ,通过对 6个焊接过程参数进行主成分分析 ,提取出影响熔宽的 4个主要因素。讨论了提取的主成分与原始过程参数间的关系。以主成分得分作为新的训练样本集 ,送入神经网络进行计算。结果表明 ,基于主成分分析的神经网络无论在收敛速度 ,还是在训练精度上 ,都远远优于基本BP神经网络。 The application of principal component analysis (PCA) and artificial neural networks (ANN) to the multivariate statistical analysis and quality control was introduced. The pool width control of MAG weld with high current was taken as an example. Through the PCA of 6 welding parameters, 4 main factors were extracted. The relationship between main factors and original parameters was discussed. The PCA values were taken as the new training sample set and the output results indicated both the convergent speed and the training accuracy of PCA-based ANN were much better than those of basic BP ANN.
出处 《焊接学报》 EI CAS CSCD 北大核心 2003年第4期55-58,64,共5页 Transactions of The China Welding Institution
关键词 焊接 质量控制 主成分分析 神经网络 BP算法 Manufacturing data processing Neural networks Principal component analysis Quality control
  • 相关文献

参考文献10

二级参考文献40

共引文献521

同被引文献83

引证文献13

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部