期刊文献+

混沌COOK调制系统误码性能分析

Error Performance Analysis of Chaos On-off Keying Communication System
下载PDF
导出
摘要 由于混沌基函数的非周期性,混沌调制系统的理论性能分析一直是个难题。本文基于离散混沌映射,视混沌信号为随机变量,推导出混沌COOK相干以及非相干解调系统的误码率计算式,并得到了仿真实验的验证。理论和仿真实验结果表明,COOK相干解调系统在理想情况下误码性能能够达到其上限,即与相干解调FSK系统相同。非相干解调系统的性能较差。 It is difficult to calculate the error performance of chaotic on-off keying communication system because of the non-periodicity of chaotic basis function. Based on discrete chaotic mapping, This paper treats the chaotic signals as random variables and gives the error performance expression theoretically, which is verified by the simulation results. Both the theoretical and simulated results show that the error performance can reach the upper bound under the ideal condition, which is equal to the conventional coherent FSK system, but the non-coherent demodulation system is much worse than coherent demodulation system.
出处 《电路与系统学报》 CSCD 2003年第4期30-33,共4页 Journal of Circuits and Systems
基金 国家教育部高校博士点基金资助项目(00056107)
关键词 COOK 相干解调 误码性能 Chaos On-off Keying coherent demodulation error performance
  • 相关文献

参考文献13

  • 1罗伟民,丘水生,禹思敏.混沌数字通信系统关键技术的研究进展[J].华南理工大学学报(自然科学版),2000,28(10):8-14. 被引量:6
  • 2Leonw CouchⅡ.数字与模拟通信系统[M].北京:清华大学出版社& Prentice-Hall,1998.. 被引量:1
  • 3Kolumbán G.Theoretical noise performance of correlated-based chaotic communications schemes [J].IEEE Trans. CAS-I,2000,47(12):1692-1701. 被引量:1
  • 4Dedieu H, Kennedy M P, Hasler M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronlzing Chua's circuits[J]. IEEE Trans. CAS.- Ⅱ, 1993, 40(10): 634-642. 被引量:1
  • 5Kolumbá G, Kennedy M P, Chua L O. The role of synchronization in digital communications using chaos--Part Ⅱ: Chaotic modulation and chaotic synchronization[J]. IEEE Trans. CAS-I, 1998, 45 (11): 1129-1140. 被引量:1
  • 6Kis G. Required bandwidth of chaotic signals used in chaotic modulation schemes[A]. Proc. NDES'98[C]. Budapest, Hungary, 1998:191-194. 被引量:1
  • 7Kolumbán G, Kennedy M P. The role of synchronization in digital communications using chaos--Part Ⅲ: Performance bounds for correlation receivers[J]. IEEE Trans. CAS-I, 2000, 47(12): 1673-1683. 被引量:1
  • 8Lasota A. Mackey M. Chaos, Fractals, and Noise: Stochastic aspects of Dynamics [A]. In: Volume 97 of Applied mathematical sciences, 2nd ed.[C]. New York: Spfing-Verlag, 1994. 被引量:1
  • 9Sushchik M, Tsimring L S, Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Trans.CAS-I, 2000, 47( 12): 1684-1691. 被引量:1
  • 10Chernov N I. Limit theorems and Markov approximations for chaotic dynamical systems[J]. Probability Theory and Related Fields, 1995,101(3): 321-362. 被引量:1

二级参考文献8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部