期刊文献+

褐飞虱发生系统的混沌诊断 被引量:4

Chaotic diagnosis of Nilaparvata lugens occurrence system
下载PDF
导出
摘要 褐飞虱在我国常年发生面积约为 1 .3× 1 0 7~ 2× 1 0 7hm2 ,年均损失稻谷 1 0× 1 0 8kg.为更深入地研究褐飞虱发生系统的特性与规律 ,并为预测和防治提供理论依据 ,以我国长江流域太湖地区 1 986~1 998年 6~ 1 1月褐飞虱田间发生时间序列资料为例 ,运用混沌理论中的自相关函数、功率谱图、相轨迹图、Poincare截面、返回映象图等方法 ,研究了褐飞虱发生系统的特性 .结果表明 ,即使有随机性噪声的影响 。 It is estimated that there are nearly 20 million hectares of rice crop being infested by Nilaparvata lugens , with an annual loss of some half a million tones of grain. In order to study the properties and laws of Nilaparvata lugens occurrence system further, the time series data of Nilaparvata lugens occurrence from 1986 to 1998 collected in Taihu Lake District were analyzed by using the methods of autocorrelation function, power spectrum figure, phase trajectory figure, poincare section, and return map of chaos theory. The results indicated that Nilaparvata lugens occurrence system in Yangtze River valley area in China had an obvious chaotic property, even though there was some interference of random noises.
出处 《应用生态学报》 CAS CSCD 2003年第8期1359-1362,共4页 Chinese Journal of Applied Ecology
基金 国家重点基础研究发展规划项目(G2 0 0 0 0 0 16 210) "94 8"资助项目( 2 0 10 6 5)
关键词 褐飞虱 功率谱图 返回映象 自相关函数 POINCARE截面 相轨迹图 Nilaparvata lugens , Chaos, Power spectrum figure, Return map, Autocorrelation function, Poincare section, Phase trajectory figure.
  • 相关文献

参考文献13

  • 1Allen JC. 1989. Are natural enemy populations chaotic? See Ref,70 : 190- 205. 被引量:1
  • 2Blasius B, Huppert A, Stone L. 1999. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature,399: 354 - 359. 被引量:1
  • 3Fox RF. 1990. Quantum chaos in two-level quantum systems. See Ref, 50:105-114. 被引量:1
  • 4Jensen RV. 1990. Quantum chaos. See Ref, 50:98- 104. 被引量:1
  • 5Kerr RA. 1989. Does chaos permeate the solar system? Scietlce,244: 144-- 145. 被引量:1
  • 6Laskar J. 1989. A numerical experiment on the chaotic behavior of the solar system. Nature, 238 : 237- 238. 被引量:1
  • 7Li X-Q(李学勤), Wang W-L(王万良), Xu W-S(许维胜), et al.1999. Advances in chaos and its control. MEEM(机电工程), 5:56 - 59 ( in Chinese). 被引量:1
  • 8Logan JA, Allen JC. 1992. Nonlinear dynamics and chaos in insect population. Ann Rev Ent, 37 : 455- 477. 被引量:1
  • 9May RM. 1976. Simple mathematical models with very complicated dynamics. Nature, 261:459- 467. 被引量:1
  • 10Murray C. 1989. Is the solar system stable? New Sci. 25 : 60 - 63. 被引量:1

同被引文献78

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部