期刊文献+

基于正交试验和BP神经网络的改良黄土强度预测 被引量:1

Strength Prediction of Stabilized Soil Based on Orthogonal Experiment and BP Neural Network
下载PDF
导出
摘要 选用新型固化材料SH与石灰组合改良黄土,进行无侧限抗压强度正交试验,结果显示,SH与石灰的最优组合是掺量为10%的SH和4%石灰,风干时间28 d。对正交试验结果进行极差和方差分析,通过BP神经网络模型进行强度预测。预测结果与试验结果基本吻合,SH与石灰组合改良的最大相对误差为3.16%,表明该神经网络模型具有较高预测精度。研究结论对进一步研究改良黄土的工程特性有一定的参考价值。 Improved loess that combined with a newly polymeric solidified material SH and lime is used in the orthogonal test of unconfined compressive strength. And the results show that the optimal combination is 10% of SH mixed with 4% of lime with 28-day-drying-time. Range analysis and variance analysis are carried out for orthogonal test, and BP artificial neural network model is predicted for strength. The prediction result basically agrees well with the test result, and maximum relative error of the combination is 3. 16%,which means the model has higher prediction accuracy. This study can be used as references for further studies on engineering characteristics of improved loess.
出处 《人民珠江》 2016年第7期27-30,共4页 Pearl River
基金 山西省自然科学基金项目(2010011029-2)
关键词 固化剂 组合加固 无侧限抗压强度 正交试验 BP神经网络 solidifying agent combined strengthening unconfined compressive strength orthogonal experiment BP Neural Networks
  • 相关文献

参考文献14

二级参考文献103

共引文献330

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部