期刊文献+

一种缓解协同过滤算法数据稀疏性的方法 被引量:7

An method for alleviating data sparsity in collaborative filtering algorithm
下载PDF
导出
摘要 协同过滤算法是推荐系统中最古老的算法之一,同时也是当今推荐系统中使用最广泛的一种算法。但是在简单,效率高的同时,协同过滤算法还存在数据稀疏性,冷启动等一些问题.本文针对其数据稀疏性的问题,提出了一种根据兴趣度预测用户未评分项目的方法。最后通过基于Netflix数据集的实验结果表明,该方法能够更好的处理稀疏矩阵,能缓解数据稀疏问题,从而提高了协同过滤算法的准确性。 The Collaborative Filtering Algorithm is one of the most ancient algorithm in recommendation system.At the same time,with the simpilicity and high efficiency,the collaborative filtering algorithm has encountered data spar-sity and cold starts problems.In this article,against the issue in data sparsity,we propose a method based on interes-tingness to predict the unrated scores by users.At the end of the ariticle,we made experiments based on Netflix dataset,and indicates that the method could better process the sparse matrix,and relieve the issue in data sparsity,and enhence improve the accuracy of collaborative filtering algorithm.
出处 《软件》 2015年第3期41-47,共7页 Software
基金 国家自然科学基金项目(No.61300176) 国家教育部博士点基金资助项目(No.20110009110032) 中央高校基本科研业务费(No.2013JBM019)
关键词 协同过滤 推荐系统 数据稀疏 兴趣度 填充矩阵 collaborative filtering recommendation system data sparsity interestingness matrix filling
  • 相关文献

参考文献7

二级参考文献61

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70. 被引量:1
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186. 被引量:1
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217. 被引量:1
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201. 被引量:1
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90. 被引量:1
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508. 被引量:1
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608. 被引量:1
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559. 被引量:1
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282. 被引量:1

共引文献275

同被引文献68

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部