期刊文献+

基于位置服务的潜在好友推荐方法 被引量:11

Potential friend recommended approach based on location services
下载PDF
导出
摘要 有效的潜在好友推荐是促进社交网络不断增长的重要途径,基于位置的社交网络(LBSN)支持用户随时随地记录自己所处的位置以及分享身边发生的事,用户通过签到生成的地理位置信息构成了用户的行为轨迹。文章提出了一种利用用户签到信息的潜在好友推荐方法,不同于传统的只考虑签到位置信息的方法,文章中的方法还考虑了签到的时间以及签到的次数。方法首先将签到的时间信息及空间信息压缩,然后进一步通过计算用户之间的相似度来决定向目标用户推荐的潜在好友。相似度主要决定于用户之间的重合点数量、近似点数量以及签到点集大小。文章最后使用大型位置服务社交网络Gowalla的真实用户访问数据,以准确率与召回率作为评价标准,证明了本文使用的方法在效果上优于传统的使用位置信息的潜在好友推荐方法。 Effective friend recommendation effective potential is an important way to promote the growing social network. Location-based social networking (LBSN) Supports user to record their location anywhere and share things happening around. Location information generated by the user constitute the user's behavior trajectory. This paper presents a potential friend recommendation method using the location information of user. Different from conventional method which only consider location information, this paper also consider the influence of time and the number of check-in. Firstly, this method compress time information and cluster location information. Then further by the similarity calculation to determine the user's recommendation to target potential friends. Similarity is mainly determined by the number of common point, the number of similar point and the user check-in point set size. Finally, this paper use a large scale dataset which come from location-based social network Gowalla’s real user access record with accuracy rate and recall rate as an evaluation to validate that this method is better than the conventional method.
作者 符饶
出处 《软件》 2015年第1期62-66,共5页 Software
关键词 好友推荐 位置服务 用户相似度 签到数据 friend recommendation location service user similarity check-in data
  • 相关文献

参考文献9

  • 1Silva N,,Tsang R I,Cavalcanti G.A graph-based friend recommendation system using genetic algorithm. Evolutionary Computation (CEC),2010 IEEE Congress on . 2010 被引量:1
  • 2CHENG Z,CAVERLEE J,LEE K,et al.Exploring millions of foot-prints in location sharing services. ICWSM11:Fifth Interna-tional AAAI Conference on Weblogs and Social Media . 2011 被引量:1
  • 3SCELLATO S,MASCOLO C.Measuring user activity on an online location-based social network. Computer Communications Workshops (INFOCOM WKSHPS),2011 IEEE Conference on . 2011 被引量:1
  • 4Tang Qiang,Hartel P.Poster:privacy-preserving profilesimilarity computation in online social networks. Pro-ceedings of the 18th ACM Conference on Computer andCommunications Security . 2011 被引量:1
  • 5WEI S,YE N,ZHANG S,et al.Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure. Computer Science&Service; System (CSSS),2012 International Conference on . 2012 被引量:1
  • 6XIE X.Potential friend recommendation in online social network. Green Computing and Communications (Green Com),2010IEEE/ACM Int’’l Conference on∬’’l Conference on Cyber,Physical and Social Computing (CPSCom) . 2010 被引量:1
  • 7钱大千,张晓东.基于SNS社交网络的增长模型[J].合肥工业大学学报(自然科学版),2010,33(8):1264-1267. 被引量:14
  • 8唐晓波,张昭.基于混合图的在线社交网络个性化推荐系统研究[J].情报理论与实践,2013,36(2):91-95. 被引量:10
  • 9于海群,刘万军,邱云飞.基于用户偏好的社会网络二级人脉推荐研究[J].计算机应用与软件,2012,29(4):39-43. 被引量:5

二级参考文献42

  • 1Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512. 被引量:1
  • 2Barabási A L,Albert R,Jeong H.Mean-field theory for scale-free random networks[J].Physica A,1999,272(1/2):173-187. 被引量:1
  • 3Albert R,Jeong H,Barabási A L.Internet:diameter of the World-Wide Web[J].Nature,1999,401(6749):130-131. 被引量:1
  • 4Huberman B A,Piroll P L T,Pitkow J E,et al.Strong regularities in World Wide Web surfing[J].Science,1998,280(5360):95-97. 被引量:1
  • 5Caldarelli G,Marchetti R,Pietronero L.The fractal properties of Internet[J].Europhys Lett,2000,52(4):386-391. 被引量:1
  • 6Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks[J].Proc Natl Acad Sci USA,2000,97(21):11149-11152. 被引量:1
  • 7Jeong H,Mason S P,Barabasi A L,et al.Lethality and centrality in protein networks[J].Nature,2001,411(6833):41-42. 被引量:1
  • 8Watts D J,Strogatz S H.Collective dynamics of small-world networks[J].Nature,1998,393(6684):440-442. 被引量:1
  • 9Newman M E J.The structure of scientific collaboration networks[J].Proc Natl Acad Sci USA,2001,98(2):404-409. 被引量:1
  • 10Barabási A L,Jeong H,Neda Z,et al.Evolution of the social network of scientific collaborations[J].Physica A,2002,311(3/4):590-614. 被引量:1

共引文献26

同被引文献110

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部