期刊文献+

基于直方图均衡化、PCA和SVM算法的人脸识别 被引量:29

Face recognition based on histogram equalization, Principal Components Analysis and Support Vector Machine algorithms
下载PDF
导出
摘要 为了提高人脸识别的识别率,本文提出了一种基于直方图均衡化、PCA和SVM算法的人脸识别。首先将人脸图像进行直方图均衡化,这样可以很好的增强图像的对比度。然后使用主成分分析(PCA)对图像进行降维和特征提取,可以减少图像识别的计算量,有效的提高识别的效率。最后,再用支持向量机(SVM)进行分类识别。在ORL人脸数据库上进行了使用验证,表明该方法能提高人脸识别的识别率。 To improve the recognition rate of face recognition, a novel method based on histogram equalization, Principal Components Analysis(PCA) and Support Vector Machine(SVM) algorithms is presented. Firstly, histogram equalization used to the face images, that enhanced the contrast of image. Then, the images were processed by PCA algorithm to reduce dimensionality and extract features, so the calculation amount was reduced and recognition rates were improved. Finally, the SVM algorithm was selected as classifier for the recognition of images. The ORL face database was used to test the proposed method, the experiment results shows that the method can improve the recognition rate.
出处 《软件》 2014年第8期11-15,共5页 Software
基金 国家自然科学基金项目(批准号:11202106 61302188) 教育部高等学校博士学科点专项科研基金项目(批准号:20123228120005) 江苏省"传感网与现代气象装备"优势学科建设项目 江苏省自然科学基金(批准号:BK20131005) 江苏省高校自然科学研究项目(批准号:13KJB170016)
关键词 人脸识别 直方图均衡化 主成分分析 支持向量机 Face recognition histogram equalization PCA SVM
  • 相关文献

参考文献6

二级参考文献23

  • 1张锦,成奋华,林雪梅,李睿,王实.基于子图特征组合的人脸识别技术研究[J].湖南大学学报(自然科学版),2007,34(6):70-73. 被引量:7
  • 2YANG M H, KRIEGMAN D J. AHUJA N. Detecting Faces in Images: A Survey[J]. IEEE Trans. On PAMI, 2002, 24(1) :34-58. 被引量:1
  • 3Yang J, Zhang D, Frangi AF, and Yang JY. Two Dimensional PCA: A New Approach to Appearance - Based Face Representation and Recognition[ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26 ( 1 ) : 131-137. 被引量:1
  • 4Bartlett MS, Lades HM, Sejnowshi T. Face Recognition by Independent Component Analysis[J ]. IEEE Transaction on Neural Networks, 2002, 13(6) : 1450-1464. 被引量:1
  • 5Vapnik V.N. The Nature of Dtatistical Learning Theory[M]. New York: Springer - Verlag, 1995:235-313. 被引量:1
  • 6SAMARIA F S, HARTER A C. Parameterization of a stochastic model for human face identification[C]. Proc. of the Second IEEE Workshop on Applications of Computer Vision. Sarasota, 1994 : 138-142. 被引量:1
  • 7Liu XM, Chen T, Kurnar BVK. Face Authentication for Multiple Subjects Using Eigenflow[J]. Pattern Recognition, 2003, 36(2) :313-328. 被引量:1
  • 8S.Mallat. A theory for Multiresolution signal decomposition.-the wavelet representation. IEEE Trans. PAMI, 1999, 11(7).. 674-693. 被引量:1
  • 9F CHENG, J YU, H XIONG, Facial Expression Recognition in JAFFE Dataset Based on Gaussian Process Classitlcation[J].Neural Networks, IEEE Transactions on,2010,21(10): 1685- 1690. 被引量:1
  • 10X XIE, K.M LAM, Face recognition using elastic local reconstruction based on a single face image[J].Pattem Recognition,2008, 41(1): 406-417. 被引量:1

共引文献298

同被引文献266

引证文献29

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部