期刊文献+

云计算技术及应用服务模式探讨 被引量:16

Cloud Computing Technology and Application Service Model to Explore
下载PDF
导出
摘要 云计算技术作为一种新型的网络应用模式出现,改善了以往互联网系统跟服务设计两者之间存在的问题,不仅对网络行业有很大的影响,对我们的日常生活也有很大的影响。本文结合笔者经验对云计算技术及其应用服务模式做简单的探讨。 Cloud computing technology as a new network application model appears to improve existing between the two services with the Internet system design problems in the past, not only has a great influence on the networking industry, on our daily lives, there are big affected. In this paper, the author experience of cloud computing technology and its application service model to do a simple discussion.
作者 李华清
出处 《软件》 2014年第2期127-128,共2页 Software
关键词 云计算 技术 应用 服务模式 cloud computing technology application service model
  • 相关文献

参考文献3

二级参考文献21

  • 1金海.漫谈云计算[J].中国计算机学会通讯,2009,5(6):22-25. 被引量:6
  • 2BREIMAN L.Random Forests[J].Machine Learning,2001,45:5-32. 被引量:1
  • 3VAPNIK V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 4FRANK A,ASUNCION A.UCI Machine Learning Repository[DB/OL].http://archive.ics.uci.edu/ml. 被引量:1
  • 5LIAW A,WIENER M.RandomForest:Breiman and Cut-ler's random forests for classification and regression[CP/OL].http://CRAN.R-project.org/package=randomForest. 被引量:1
  • 6EVGENIA D,KURT H,FRIEDRICH L,et al.E1071:Misc Functions of the Department of Statistics[CP/OL].http://CRAN.R-project.org/package=e1071. 被引量:1
  • 7CHANG C C,LIN C J.LIBSVM:A Library for Support Vector Machines[J].ACM Transactions on Intelligent Sys-tems and Technology,2011,2(3):27:1-27:27. 被引量:1
  • 8KEERTHI S S,LIN C J.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computa-tion,2003,15(7):1667-1689. 被引量:1
  • 9LIN H T,LIN C J.A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods[R].Department of Computer Science,National Taiwan University,2003. 被引量:1
  • 10MENKE J,MARTINEZ T R.Using Permutations Instead of Student’s t Distribution for p-values in Paired-Differ-ence Algorithm Comparisons[C].Proceedings of2004IEEE International Joint Conference on Neural Networks2004,2:1331-1335. 被引量:1

共引文献103

同被引文献123

引证文献16

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部