期刊文献+

关联规则和分类规则挖掘算法的改进与实现 被引量:8

Enhancement and Implementation of Association Rules and Classification Rules Mining Algorithm
下载PDF
导出
摘要 对Apriori关联规则挖掘算法提出了一种改进方法,使其可以有效地压缩数据规模,提高了原Apriori算法的执行效率。此外,还对OC1分类规则挖掘算法提出了改进,扩展了该算法的适用范围。同时,该采用这两个改进算法实现了一个数据挖掘原型系统。 The paper focus on the Apriori association rules mining algorithm ,presents an enhanced method which can effectively reduce the number of data to improve the original Apriori algorithm performance. Moreover, an enhanced method of OC1 classification rules mining algorithm is proposed, which extends the applicable scope of original algorithm .A data mining prototype system is implemented with the two enhanced algorithms .
作者 陶树平 屠颖
出处 《计算机工程》 CAS CSCD 北大核心 2003年第15期100-101,187,共3页 Computer Engineering
关键词 数据挖掘 关联规则 分类规则 斜面超平面 Data mining Association rules Classification rules Oblique hyper-plane
  • 相关文献

参考文献6

  • 1Barbara D. Dara Mining Tutorial. WAIM, 2000. 被引量:1
  • 2Hilderman R J. Mining Market Basket Data Using Share Measures and Characterized Itemsets. PAKDD-98 Proc., 1998. 被引量:1
  • 3Quinlan J R. C4.5 : Programs tbr Machine Learning. Morgan Kaufmann,1993. 被引量:1
  • 4Kryszkiewicz M. Representative Association Rules. PAKDD-98 Proc., 1998. 被引量:1
  • 5Agrawal R. Mining Association Rules Between Sets of Items in Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data, 1993. 被引量:1
  • 6Agrawal R, Srikant R. Fast Algorithms lbr Mining Association Rules,Proc. of the 20^th VLDB Conf., 1994. 被引量:1

同被引文献83

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部