期刊文献+

基于受控微分—代数系统灵敏度分析的紧急控制 被引量:14

EMERGENCY CONTROL BASED ON SENSITIVITY ANALYSIS OF CONTROLLED DIFFERENTIAL-ALGEBRAIC SYSTEMS
下载PDF
导出
摘要 基于时域仿真得到的系统受扰轨迹给出了暂稳紧急控制的非线性规划模型 ,该模型采用一种启发式的功角积分型指标构成稳定约束。通过引入受控非线性微分—代数系统灵敏度分析求出所定义的功角积分型指标对控制变量的梯度后 ,给出了所建立的暂稳紧急控制非线性规划模型的2种求解方法 :近似规划算法和拟贪婪算法。所提出的暂稳紧急控制模型与时域仿真具有同等的模型适应性。对多机系统切机 /切负荷暂稳紧急控制的数值仿真表明 。 The nonlinear programming model for transient stability emergency control is presented based on disturbed trajectories acquired by time domain transient simulations. The stability constraint of this model is founded by a heuristic kind of power angle integration index (PAII). After the gradient of PAII to control variables is acquired through sensitivity analysis of a controlled nonlinear differential-algebraic system, two methods for solving the transient stability emergency control model, namely approximated programming algorithm and pseudo-greedy algorithm, are presented. The transient stability emergency control model has the same adaptability to power system mathematical models as time domain simulation. Simulation in a multi-machine power system demonstrates that the proposed scheme for transient emergency control is effective.
出处 《电力系统自动化》 EI CSCD 北大核心 2003年第17期19-22,91,共5页 Automation of Electric Power Systems
关键词 紧急控制 受控非线性微分-代数系统 灵敏度分析 电力系统 Computer simulation Electric power systems Mathematical models Nonlinear programming Sensitivity analysis Stability Time domain analysis
  • 相关文献

参考文献13

  • 1薛禹胜..运动稳定性量化理论 非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版社,1999:401.
  • 2刑文训.现代优化计算方法[M].北京:清华大学出版社,1999.. 被引量:44
  • 3傅书逖 倪以信 等.直接法稳定分析[M].北京:中国电力出版社,1999.. 被引量:7
  • 4薛禹胜.暂态稳定预防控制和紧急控制的协调[J].电力系统自动化,2002,26(4):1-4. 被引量:67
  • 5孙元章,彭疆南.基于Hamiltonian理论的受控电力系统暂态稳定分析方法[J].电网技术,2002,26(9):1-6. 被引量:17
  • 6马振华 刘坤林 陆璇 等.现代应用数学手册——运筹学与最优化理论卷[M].北京:清华大学出版社,1998.. 被引量:2
  • 7Chiang H D, Chu C C, Cauley G. Direct Stability Analysis of Electric Power Systems Using Energy Functions: Theory,Application, and Perspective. Proceedings of the IEEE, 1995,83(11): 1497~ 1529. 被引量:1
  • 8Fouad A A, Vittal V. Power System Transient Stability Analysis Using the Transient Energy Function Method.Englewood Cliffs (New Jersey): Prentice-Hall, 1992. 被引量:1
  • 9Laufenberg M J, Pai M A. A New Approach to Dynamic Security Assessment Using Trajectory Sensitivities. IEEE Trans on Power Systems, 1998, 13(3): 953~958. 被引量:1
  • 10Eslami M. Theory of Sensitivity in Dynamic Systems. NewYork: Springer, 1994. 被引量:1

二级参考文献11

  • 1薛禹胜.电力系统稳定性的在线评测.1998中国科学技术前沿(中国工程院版)[M].北京:高等教育出版社,1999.. 被引量:1
  • 2[1]Moore J B,Anderson B D O.A generalization of Popov criterion[M].Franklin Inst,1968.285. 被引量:1
  • 3[2]Pai M A.Power system stability analysis by the direct method of Lyapunov[M].North-Holland Publishing Company,1981. 被引量:1
  • 4[3]Fouad A A,Vittal Y.The transient energy function method[J].International Journal of Electrical Power & Energy Systems,1988,10(4). 被引量:1
  • 5[4]Fouad A A,Staton S E.Transient stability of a multi-machine power system[J].IEEE transaction on Power Apparatus and Systems,1981,100(7). 被引量:1
  • 6[5]Xue Y,Cutsem T V,Ribbens-Povella M.Extended equal area criterion jastification,generalization, applications[J].IEEE Transaction on Power Systems,1989,4(1). 被引量:1
  • 7[6]Maschke B M,A J van der Schaft,Breedveld P C.An intrinsic Hamiltonian formulation of the dynamics of LC-circuits[J].IEEE Transaction on Circuits and Systems,1995,42(2). 被引量:1
  • 8[7]Kunder P.Power system stability and control[M].McGraw-Hill, Inc.,NY,1993. 被引量:1
  • 9陈永红,薛禹胜.区域紧急控制的优化算法[J].中国电力,2000,33(1):44-48. 被引量:33
  • 10薛禹胜.EEAC与直接法的机理比较(一)——受扰程度函数[J].电力系统自动化,2001,25(11):6-11. 被引量:30

共引文献131

同被引文献155

引证文献14

二级引证文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部