摘要
本文在多项式的系数空间中讨论离散时间意义下多项式的鲁棒稳定性和有理函数的严格正实不变性,证明了对于系数空间中的某种超矩形,其顶点多项式的稳定性就保证了全族无穷多个多项式的稳定性;对于有理函数的严格正实性,本文也得到了类似的结论。
This paper discusses robust stability of polynomials and strictly positive realness invariance of rational functions in coefficient space in the sense of discrete time.We prove that,for certain superrcctanglc in coefficient space,the stability of all vertex polynomials implies the stability of the whole family,Similar results have been obtained for the strict positive realness of rational functions.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1992年第2期155-160,共6页
Control Theory & Applications
基金
国家自然科学基金
关键词
多项式
有理函数
稳定性
系数空间
linear systems
polynomials
rational functions
stability
robustness
strict positive realties
coefficient space