期刊文献+

基于贝叶斯网络的联网环境中跟车工况下的前车运动状态预测 被引量:7

Prediction of Preceding Car Motion Under Car-following Scenario in the Internet of Vehicle Based on Bayesian Network
下载PDF
导出
摘要 车辆行驶过程中,前方车辆运动状态预测是车辆智能控制系统的重要研究部分。车辆运动状态受其驾驶员驾驶风格、道路状况、交通流、前方车辆运动速度和加速度等因素的影响,使车辆在未来一定时间段内的运动状态具有较大不确定性,给前方车辆的运动状态预测带来困难,因此本文中对跟车工况下前车运动状态预测进行研究。本文中在分析车辆跟车工况时的运动特性,采用贝叶斯网络对前方车辆运动速度进行预测,将获得的车辆跟车工况时的运动状态数据分为训练集和测试集。通过训练集辨识前车速度预测贝叶斯网络参数,通过测试集检验前车速度预测贝叶斯网络的预测效果。对前车未来0.1,0.5,1和2s时的运动速度进行预测,预测结果表明,前车的实际运动速度均在前车速度预测贝叶斯网络预测的95%置信区间内。 In the process of vehicle driving, the prediction of motion state of vehicle in front is an important research part of intelligent vehicle control system. Influenced by factors such as the driver’s driving style, road condition, traffic flow, the speed and acceleration of the vehicle ahead, the motion state of the vehicle in a certain period of time in the future has great uncertainties, which brings difficulties to the prediction of the motion state of the vehicle ahead. This paper studies the prediction of the motion state of the vehicle ahead under the car-following conditions. In this paper, the motion characteristics of the vehicle under car-following conditions are analyzed, and Bayesian network is used to predict the speed of the vehicle ahead. The obtained motion state data of the vehicle under car-following conditions are divided into training set and test set. The training set is used to identify the parameters of the front vehicle speed for prediction of Bayesian network parameters, and the test set is used to verify the prediction effect of Bayesian network for front vehicle speed prediction. The prediction results show that the actual speed of the front vehicle is within 95% confidence interval predicted by Bayesian network for the prediction of the front vehicle speed in the next 0.1,0.5,1 and 2 s.
作者 张金辉 李克强 罗禹贡 张书玮 李红 Zhang Jinhui;Li Keqiang;Luo Yugong;Zhang Shuwei;Li Hong(Tsinghua University,State Key Laboratory of Automotive Safety and Energy,Beijing 100084)
出处 《汽车工程》 EI CSCD 北大核心 2019年第3期245-251,274,共8页 Automotive Engineering
基金 国家重点研发计划项目(2016YFB0100900)资助
关键词 智能驾驶 状态预测 车联网 贝叶斯网络 intelligent driving state prediction Internet of vehicle Bayesian network
  • 相关文献

参考文献4

二级参考文献50

  • 1李向瑜,高振海,袁昌碧,谯艳娟.汽车巡航控制系统的环境评估[J].吉林大学学报(工学版),2008,38(S1):28-31. 被引量:2
  • 2金立生,Bartvan Arem,杨双宾,Mascha van der Voort,Martijn Tideman.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版),2009,39(3):582-586. 被引量:28
  • 3宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 4高越,高振海,李向瑜.基于自适应Kalman滤波的汽车横摆角速度软测量算法[J].江苏大学学报(自然科学版),2005,26(1):24-27. 被引量:15
  • 5Talukdar A K, Badrinath B R, Acharya A. MRSVP: A resource reservation protocol for an integrated services network with mo bile hosts[J]. Wireless Networks, 2001,7(1): 5~19 被引量:1
  • 6Hou J,Fang Y. Mobility-based call admission control schemes for wireless mobile networks. Wireless Communications and Mobile Computing[J]. 2001, 5(1): 269~282 被引量:1
  • 7Wang X W, Yuan C Q, Song B, Huang M. A QOS-based handoff supporting mechanism[A]. The Tenth Joint International Computer Conference[C]. 2004,11: 282~285 被引量:1
  • 8Das S K,Jayaram R,Kakani N K,Sanhoy K. A call admission and control scheme for quality-of-service(QoS) providsioning in next generation wireless networks[J]. Wireless Networks, 2000(6) : 17 ~30 被引量:1
  • 9Wang X W,Yuan C Q, Song B, Huang M. A fan-shaped flexible resource reservation mechanism in mobile wireless Internet[A].The fifth international conference on parallel and distributed computing, applications and technologies[C], 2004, 12 singapore, LNCS3320: 660~664 被引量:1
  • 10Lee D S, hsuch Y H. Bandwidth-reservation scheme based on road information for next-generation cellular networks [J ]. IEEE Transactions on Vehicular Technology, 2004,53 (1): 243~ 252 被引量:1

共引文献45

同被引文献61

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部