摘要
对一般子集系统 Z,引入了 Rudin性质,给出了它的映射式刻划,作为拟连续偏序集和Z-连续偏序集的公共推广,引入了拟Z-连续Domain的概念,讨论了拟Z-连续Domain的基本性质,特别地,给出了 Rudin性质及其映射式刻划在拟 Z-连续Domain方面的若干应用,将关于拟连续偏序集的主要结果推广至了拟 Z-连续 Domain情形。
For a general subset system Z, the Rudin property is denned and its characterization in mapping forms are given. As a common generalization of quasicontonuous posets and Z-continuous posets, quasi Z-continous domains are introduced and some basic their properties are investigated. In particular, several applications of the Rudin property and its mapping characterization to quasi Z-continuous domains are given. The main part of the theory of quasicontinuous posets is carried to quasi Z-continous domains.
出处
《数学年刊(A辑)》
CSCD
北大核心
2003年第4期483-494,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.19561002
No.19831040
No.10071053)
国家数学天元基金(No.TY10126026)
江西省主要学科新世纪学术带头人培养基金
江西省自然科学基金