期刊文献+

遥感图像多维量化关联规则挖掘 被引量:19

Multidimensional and Quantitative Association Rule Mining from Remote Sensing Images
下载PDF
导出
摘要 数据与数据库的爆炸式增长引发了一个十分突出的问题,就是如何高效、智能地将海量的数据转化为有用的信息和知识?近年来,数据挖掘技术的广泛研究正是基于这个目的。初步研究了卫星遥感数据的关联规则挖掘及其在土壤侵蚀和退耕还林上的应用。根据多维空间数据的特点,将遥感数据的属性值划分为不同的块。同时为了充分利用现有的关联规则挖掘的算法,还将划分好的数据转变为事务数据库形式。最后,利用Apriori算法提取了土壤侵蚀强度与坡度、植被覆盖度以及坡耕地之间有意义的关联,为退耕还林还草决策提供有益的支持。 Data mining and knowledge discovery from a large amount of image data such as remote sensing images has become highly required recent years. The association rule discovery problem in particular has been widely studied. This paper presents preliminary work in using data mining techniques to find interesting multidimensional and quantitative association rule from remotely sensed data. The data concludes two variables (e.g. vegetation cover and farmland distribution) extracted from Landsat 7 ETM, slope (from DEM data) and along with additional data from USLE model (e.g. soil erosion ). Based on the characteristics of the remote sensed data, this article presents a method partitioning quantitative attributes into unequal partitions. We show one way to generate association rule is to transform the images' data into a set of market\|basket type transaction. The main advantage of doing this is that we can use the existing algorithm and software to discover the association rule that exist in the data. One example about soil and water erosion and closing farming land for forest or grasses is employed to support it.
出处 《遥感技术与应用》 CSCD 2003年第4期243-247,共5页 Remote Sensing Technology and Application
基金 863课题2002AA639160的支持。
关键词 关联规则 数据挖掘 遥感图像 APRIORI算法 Association rule, Data mining, Remote sense images, Apriori algorithm
  • 相关文献

参考文献7

  • 1Jiawei,Han,Micheline,Kamber..数据挖掘 概念与技术 英文[M].北京:高等教育出版社,2001:550.
  • 2马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001,21(4):6-9. 被引量:141
  • 3马超飞,马建文,哈斯巴干,韩秀珍.基于RS和GIS的岷江流域退耕还林还草的初步研究[J].水土保持学报,2001,15(4):20-24. 被引量:47
  • 4Zaiane O R, Han J, Li Z N, et al. Multimedia-miner: A System Prototype for Multimedia Data Mining[A]. Proceedings ACM-SIGMOD Conference on Management of Data, System Demo, 1998. 581-583. 被引量:1
  • 5Agrawal R, Imelinski T, Swani A. Mining in Association Rules Between Sets of Items in Large Database[A]. Proceedings ACM-SIGMOD International Conference, 1993. 207-216. 被引量:1
  • 6Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules[A]. Proceeding of 20th International Conference on VLDB, 1994. 487-499. 被引量:1
  • 7Srikant R, Agrawal R. Mining Quantitative Association Rules in Large Relational Tables [A]. Proceedings. 1996 ACMSIGMOD Internation Conference Management of Data, 1996.1-12. 被引量:1

二级参考文献24

共引文献185

同被引文献219

引证文献19

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部