摘要
从莫洛金斯基(Molodensky)等1960年给出的由垂线偏差计算大地水准面空域积分公式出发,导出了其相应谱域1维严密卷积和2维球面及平面卷积公式。由Topex/Poseidon,ERS 1/2及Geosat/GM,ERM测高资料求解的垂线偏差计算了我国海域及其邻区大地水准面,其中计算格网为2.5′×2.5′。为了检核,将测高垂线偏差由逆维宁 迈尼兹(Vening Meinesz)公式反演重力异常,与海上船测重力值进行了外部检核;同时还利用司托克斯(Stokes)公式,由上述反演的重力异常计算大地水准面高,与莫洛金斯基公式直接解得的相应结果进行比较作为内部检核。前者的中误差为±9mGal(1Gal=1cm/s2),后者为±0.025m。本文在积分计算中充分应用了2维平面坐标形式和1维卷积严格公式,并做了比较和自校核。
Starting from the integral formula for computing geoid with deflection of the vertical in space domain given by Molodensky et.al. in 1960, the corresponding convolution formulas, i.e. a strict one dimension one, a two dimension spherical one and a strict planar one in rectangular coordinate form, are derived in spectral domain. Geoid determination in China Sea Area is carried out with the marine deflection of the vertical computed from the altimeter data of Topex/Poseidon, ERS2 and Geosat/GM ERM, in which 2.5′×2.5′ grids for calculation are used. In order to check the computed results, the gravity anomalies computed by inverse VeningMeinesz formula from altimetryderived deflection of the vertical data is compared with those collected from Shipboard gravimetry in the sea as an external examination. Meanwhile, the geoid which is directly solved out by Molodensky formula mentioned above is compared with that computed by Stokes formula using the deflectioninversed gravity anomaly data as an inner examination. The standard deviation is ±9 mGal for the former, and ±0.02 m for the latter. Moreover, the spherical convolution formula, planar one and strict onedimension one are all used in the computation for mutual check in the paper.
出处
《测绘学报》
EI
CSCD
北大核心
2003年第2期114-119,共6页
Acta Geodaetica et Cartographica Sinica
基金
国家杰出青年科学基金资助项目(49625408)
国家测绘局测绘科技发展基金资助项目(C95 04)
国家自然科学基金资助项目(49584002)
海洋863青年基金资助项目(Q 03)