期刊文献+

基于神经网络技术提高红外气体分析器的选择性 被引量:6

Study on Increasing Selectivity Index of Infrared Gas Analyzer with Neural Network
下载PDF
导出
摘要 应用前馈神经网络算法消除非目标参量对主传感器的干扰,从而提高了红外气体分析器的选择性.以检测甲烷为例,在干扰气体乙烯的体积分数变化了7600×10-6时,经神经网络融合处理后,分析器的选择性系数从3.17提高到422,主传感器输出的引用误差从58%降为0.65%,实现了对甲烷的准确识别.实验结果表明,该方法具有实际应用前景. To increase the selectivity of infrared gas analyzer, a method is proposed by applying the back-propagation neural network can eliminate the cross-interference between non-aim parameter and aim parameter adopting nonlinear approach ability and generalized function of neural network, so the selectivity is improved appreciably. The analysis of typical examples shows that the selectivity magnitude of IGA can be increased from 3.17 to 422 with the aid of this method and consequently gas is detected accurately. The method provides an effective approach for improving selectivity of IGA and exhibits practical prospect.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第8期787-790,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50077016).
关键词 红外气体分析器 选择性 数据融合 神经网络 Backpropagation Error analysis Gases Methane Neural networks Sampling Sensor data fusion
  • 相关文献

参考文献4

  • 1张永怀,白鹏,刘君华.红外气体分析器[J].分析仪器,2002(3):36-40. 被引量:22
  • 2Nadezhdinskii A, Berezin A, Chemin S, et aL High sensitivity methane analyzer based on tuned near infrared diode laser [J]. Spectrochimica Acta:Part A,1999 (55):2083~2089. 被引量:1
  • 3Melendez J, de Castro A J, Lopez F, et al. Spectrally selective gas cell for electro-optical infrared compact multi-gas sensor[J]. Sensor and Actuators:A, 1995(46/47):417~421. 被引量:1
  • 4Reich S L, Gomez D R, Dawidowski L E. Artificial neural network for the identification of unknown air pollution sources[J].Atmospheric Environment,1999 (33):3045~3052. 被引量:1

二级参考文献12

共引文献21

同被引文献52

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部