期刊文献+

基于时变马尔科夫转移概率的机动目标多模型跟踪 被引量:18

Maneuvering Target Tracking Based on Time-Varying Markov Transition Probabilities
下载PDF
导出
摘要 为了消除机动目标多模型跟踪中人为因素对跟踪精度的影响,提出了一种新的基于时变马尔科夫转移概率的机动目标多模型跟踪算法.该算法通过对Baum辅助函数的最大化实现隐马尔科夫模型状态转移概率的参数估计,并将估计结果用于交互式多模型算法的设计中,构造出时变马尔科夫状态转移概率的交互式多模型算法,有效地降低了人为因素对机动目标跟踪精度的影响.通过对一个机动目标的跟踪对比,说明了该算法比传统的交互式多模型算法具有更小的跟踪误差和良好的模型跟踪概率. To decrease the man-made effects on target tracking accuracy, a new maneuvering target tracking algorithm is presented, in which the Baum's auxiliary function is maximized to estimate the transition probabilities of hidden Markov model, the interacting multiple model (IMM) tracking algorithm based on time-varying Markov state transition probabilities is designed by means of the above procedure, and the maneuvering target tracking accuracy is increased efficiently. The simulation results for a maneuvering target tracking example indicate that the better tracking model probabilities can be obtained with the proposed algorithm. And in comparison with that of the conventional IMM algorithm, the tracking errors of position and speed are decreased obviously.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第8期824-828,共5页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展规划"九七三"资助项目 (2 0 0 1CB3 0 940 4).
关键词 隐马尔科夫模型 转移概率 多模型 跟踪 Computer simulation Errors Maneuverability Markov processes Monte Carlo methods Probability distributions Time varying systems
  • 相关文献

参考文献9

  • 1Bar-shalom Y, Rong L X. Estimation and tracking principles, techniques, and software [M]. Boston. Artech House, 1993. 被引量:1
  • 2Lin H J, Atherton D P. An investigation of the SFIMM algorithm for tracking manoeuvring targets[A]. The 32^nd Conference on Decision and Control,San Antonio,Texas, 1993. 被引量:1
  • 3Munir A, Atherton D P. Adaptive interacting multiple model algorithm for tracking a manoeuvring target[J]. IEE Proceedings of Radar, Sonar and Navigation,1995,142(1):11~17. 被引量:1
  • 4Averbuch A, Itzikowitz S, Kapon T. Radar target tracking---viterbi versus IMM[J]. IEEE Transactiions on Aerospace and Electronic Systems, 1999,27(3):550~563. 被引量:1
  • 5Rabiner L R. A tutorial on hidden Markov model and selected applications in speech recognition[J]. Proceedings of IEEE, 1989,77(2):257~285. 被引量:1
  • 6Baker J K. The dragon system--an overview[J].IEEE Transactions on Acoustics, Speech, Signal Processing, 1975,23(1):24~29. 被引量:1
  • 7Baum L E, Sell G R. Growth functions for transformations on manifolds[J]. Pac J Math, 1968, 27(2).211~227. 被引量:1
  • 8Frenkel L, Feder M. Recursive expectation maximization (EM) algorithms for time-varying parameters with applications to multiple target[J]. IEEE Transactions on Signal Processing,1999,47(2):306~320. 被引量:1
  • 9Wu W R, Chen P P. A nonlinear IMM algorithm for maneuvering target tracking [J].IEEE Transactions on Aerospace and Electronic Systems, 1994,30(3):875~885. 被引量:1

同被引文献115

引证文献18

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部