期刊文献+

GEOMETRY AND DIMENSION OF SELF-SIMILAR SET 被引量:2

GEOMETRY AND DIMENSION OF SELF-SIMILAR SET
原文传递
导出
摘要 The authors show that the self-similar set for a finite family of contractive similitudes (similarities, i.e., |fi(x) - fi(y)| = αi|x - y|, x,y ∈ RN, where 0 < αi < 1) is uniformly perfect except the case that it is a singleton. As a corollary, it is proved that this self-similar set has positive Hausdorff dimension provided that it is not a singleton. And a lower bound of the upper box dimension of the uniformly perfect sets is given. Meanwhile the uniformly perfect set with Hausdorff measure zero in its Hausdorff dimension is given.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第1期57-64,共8页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10171090, No.10231040).
关键词 Self-similar set Uniformly perfect set Hausdorff dimension 几何 维数 自相似集 单元素集 一致完备集 Hausdorff维度 收缩相似
  • 相关文献

参考文献8

  • 1Barnslay, M. F., Fractals everywhere, Academic Press, 1988. 被引量:1
  • 2Falconer, K. J., Fractal geometry: Mathematical foundations and applications, John Wiley & Sons,1990. 被引量:1
  • 3Pommerenke, Ch., Uniformly perfect sets and the Poincaré metric, Arch. Math., 32(1979), 192-199. 被引量:1
  • 4Moran, P. A. P., Additve functions of intervals and Hausdorff measure, Proc. Camb. Philos. Soc.,42(1946), 15-23. 被引量:1
  • 5Hutchinson, J. E., Fractal and self-similarity, Indiana Univ. Math. J., 30(1981), 713-747. 被引量:1
  • 6Mattila, P., Geometry of sets and measures in Euclidean spaces (Fractals and rectifiability), Cambridge University Press, 1995. 被引量:1
  • 7de Guzmán, M., Real variable methods in Fourier analysis, North-Holland, 1981. 被引量:1
  • 8Kenyon, R., Projecting the one-dimensional Sierpinski gasket, Isr. J. of Math., 97(1997), 221-238. 被引量:1

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部