期刊文献+

COMPLEXITY OF LARGE TIME BEHAVIOUR OFEVOLUTION EQUATIONS WITH BOUNDED DATA 被引量:3

COMPLEXITY OF LARGE TIME BEHAVIOUR OF EVOLUTION EQUATIONS WITH BOUNDED DATA
原文传递
导出
摘要 The authors study the asymptotic behaviour of solutions of the heat equation and a number of evolution equations using scaling techniques. It is proved that in the framework of bounded data stabilization need not occur and the general asymptotic behaviour is complex. This behaviour reflects for large times, even on compact sets, the complexity of the initial data at infinity.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第2期293-310,共18页 数学年刊(B辑英文版)
关键词 Asymptotic behaviour SCALING Omega-limit Heat equation Hyperbolic conservation laws 复杂性 大时间行为 发展方程 有界数据 热方程 Omega极限 双曲守恒定律 半群 收敛性
  • 相关文献

参考文献34

  • 1Aronson,D.& Ph.Bénilan,A nonlinear heat equation with singular diffusivity [J],Coamun.in Partial Differ.Equations,13(1979),985 1039. 被引量:1
  • 2Ph.Bénilan,Equations d'évolution dans un espace de Banach quelconque et applications [D],Thesis.Orsay,1972. 被引量:1
  • 3Ph.Bénilan & Kruzhkov,S.N.,Conservation laws with continuous flux functions [J],Nonlinear Diff.Eqns.Applic.(NODEA),3:4(1996),395-419. 被引量:1
  • 4Bohr.H.,Almost periodic functions [M],Chelsea,1947. 被引量:1
  • 5Brezis,H.,Analyse fonctionnelle [M],Masson,Paris,1983. 被引量:1
  • 6Chasseigne,E.& Vazquez,J.L.,Theory of extended solutions for fast diffusion equations in optimal classes of data,radiation from singularities [J],Archive Rat.,Mech.Anal.(to appear). 被引量:1
  • 7Chen,G.Q.& Frid,H.,Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws [J],Arch.Rat.Mech.Anal.,153(2000),205-220. 被引量:1
  • 8Chen,G.Q.& Rascle,M.,Initial layers and uniqueness of weak entropy solutions to hyperbolic laws [J],Arch.Rat.Mech.Anal.,153(2000),205-220. 被引量:1
  • 9Crandall,M.G.,The semigroup approach to first-order quasilinear equations in several space variables [J],Israel J.Math.,12(1972),108-132. 被引量:1
  • 10Di Benedetto,E.,Degenerate parabolic equations [M],Series Universitext,Springer-Verlag,New York,1993. 被引量:1

同被引文献24

  • 1Thierry Cazenave,Flávio Dickstein,Fred B. Weissler.Nonparabolic Asymptotic Limits of Solutions of the Heat Equation on $${\mathbb{R}}^N$$[J]. Journal of Dynamics and Differential Equations . 2007 (3) 被引量:1
  • 2J. A. Carrillo,J. L. Vázquez.Asymptotic Complexity in Filtration Equations[J]. Journal of Evolution Equations . 2007 (3) 被引量:1
  • 3Juan Luis Vázquez.Asymptotic behaviour for the porous medium equation posed in the whole space[J]. Journal of Evolution Equations . 2003 (1) 被引量:1
  • 4S. Kamin,L. A. Peletier.Large time behaviour of solutions of the porous media equation with absorption[J]. Israel Journal of Mathematics . 1986 (2) 被引量:1
  • 5S. Kamenomostskaya.The asymptotic behaviour of the solution of the filtration equation[J]. Israel Journal of Mathematics . 1973 (1) 被引量:1
  • 6Lee Ki,Petrosyan A,Vazquez J L.Large-time geometric properties of solutions of the evolution p-Laplacian equation. J Differ Equs . 2006 被引量:1
  • 7V′azquez J L.The Porous Medium Equation, Mathematical Theory. Oxford Mathematical Monographs . 2007 被引量:1
  • 8Wu Z Q,Yin J X,Li H L,Zhao J N.Nonlinear Diffusion Equations. . 2001 被引量:1
  • 9Yin J X,Wang L W,Huang R.Complexity of asymptotic behavior of the porous medium equation in R N. . 2009 被引量:1
  • 10Bertsch M,Kersner R,Peletier L A.Positivity versus localization in degenerate diffusion equations. Non- linear Anal TMA . 1985 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部