摘要
提出一种新的无时间约束时域有限差分 (FDTD)法。与传统的方法不同的是在该方法中引进了交替隐式 (ADI)技术 ,即将原来一个时间步分成两个子时间步 ,在两个子时间步中 ,显式和隐式差分误差相互弥补使精度仍保留在二阶小量。理论证明 ,这种混合技术不再要求时间上满足原有约束条件 ,对于长时间才能稳定的问题具有较高的实用价值。而光电子带隙结构 (PBG)是一种周期性结构 ,多次反射与透射导致电磁波在该结构中形成较长时间振荡 ,采用ADI技术 ,时间步长的增加将明显减少FDTD的计算时间 。
In this paper, a new finite-difference-time-domain (FDTD) algorithm is investigatd in order to eliminate the Courant-Friedrich-Levy conditions restraint. The new algorithm, namely ADI-FDTD, is based on an alternating-direction implicit method. In this algorithm, the conventional time step is divided into two sub-time-steps and their difference error can be remedy each other. It has a high efficiency in the case that a long time is consumed so as to obtain stable status. This situation appears in the PBG structure that its periodical leads to a complex reaction with EM fields. A numerical example on One-dimensional PBG material is presented to demonstrate the availability and efficiency of ADI-FDTD algorithm.
出处
《电波科学学报》
EI
CSCD
2003年第3期281-285,共5页
Chinese Journal of Radio Science
基金
中新合作基金项目