摘要
微正则系综中的基本热力学函数是熵 ,根据其极值性质 ,将系统中涨落的熵S在平衡态之熵S0 附近作泰勒级数展开 ,只保留压强P增量的二级项 ,得到压强P的相对涨落强度。根据量子气体的粒子数密度和能量密度的结论 ,通过严格的理论推算 ,求得量子理想气体、极端相对论量子理想气体的压强和定容热容量 ,得出这两种物理模型在高温低密度条件下压强涨落规律。对比经典理想气体、量子理想气体和极端相对论量子理想气体 3种物理模型的压强涨落规律可以发现 。
The basic thermodynamic function about ting canonical assemblage is entropy. Let the fluctuated entropy S of the system spread with TaiLei series near the entropy S 0 of equilibrium state, according to characters of extreme value of entropy. The second class order of increment of state parameter pressure P was remained, and the relative strength of fluctuating pressure P can be achieved. According to the conclusions of the densities of particle number and energy, the pressures and heat capacities at constant volume of the quantum perfect gas and the extreme relativistic quantum perfect gas can be obtained by means of strict theory inference. Finally, the concrete rule of the pressure fluctuation about two physical models can be obtained under high temperature. The analysis on their physical mechanism clarifies that the extreme relativity has the advances in quantum statistics at high temperature and the practical prospect of the pressure fluctuation.
出处
《石油大学学报(自然科学版)》
CSCD
北大核心
2003年第3期119-121,共3页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
微正则系综
极端相对论
量子理想气体
高温条件
压强
quantum perfect gas
ting canonical assemblage
pressure
fluctuation
extreme relativity