期刊文献+

一种非线性的分形图像压缩编码算法

Nonlinear Algorithm for Fractal Image Compression Coding
下载PDF
导出
摘要 针对经典的分形压缩编码字典相对较小这一不足之处,提出一个简单的非线性分形压缩算法,简化了Popeseu等提出的算法,用于解决压缩字典较小的问题·此外,还根据这个算法给出计算整数象素点灰度值的计算公式,可以快速地计算出整数点的灰度值·实验结果表明,这一新型的分形圆盘压缩算法简单可行,并具有良好的压缩结果和高质量的重建图像·和常规分形编码方法相比,该方法还具有较高的PSNR· A classical fractal compression dictionary is relatively small. A simple and nonlinear disk algorithm was designed to overcome this defect. It simplifies the disk algorithm by Popeseu etc. A computation formula of the gray value of integral pixel point was given according to the nonlinear disk algorithm. It can quickly compute gray value of integral pixel point in the image. The new fractal disk algorithm is simple,has better compression results,and generates highquality rebuilding image. It also has better PSNR than the conventional fractal image compression coding.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第7期655-657,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(69973033).
关键词 分形图像 分形编码 圆盘算法 压缩字典 重建图像 fractal image fractal coding disk algorithm compression dictionary rebuilding image
  • 相关文献

参考文献13

  • 1赵德平,郭志,高丽佳.一种快速分形图像压缩编码[J].东北大学学报(自然科学版),2002,23(9):825-828. 被引量:4
  • 2Jacquin A E. Image coding based on a fractal theory of iterated contractive image transformations [ J ]. IEEE Transactions on Image Processing, 1992,1 ( 1 ) : 18 - 30. 被引量:1
  • 3Popeseu D C, Dimca A, Hong Y. A nonlinear model for fractal image coding [ J ]. IEEE Transactions on Image Processing, 1997,6(3) :373 - 382. 被引量:1
  • 4Barnsley M F. Fractals Everywhere [ M]. New York:Academic Press, 1993. 118- 138. 被引量:1
  • 5Fisher Y. Fractal image compression[J]. Fractals, 1994,2(3) :321 - 329. 被引量:1
  • 6Jacobs E W, Fisher Y,Boss R D. Image compression: a studyof the iterated transform method [ J ]. Signal Processing,1992,2(9) : 127 - 142. 被引量:1
  • 7Christopher J W, Blake F B. On the performance of fractal compression with clustering [ J ]. IEEE Transactions on Image Processing, 1996,5 (3) :522 - 526. 被引量:1
  • 8Chang H T, Kuo C J. Iteration-free fractal image coding based on efficient domain pool design [ J ]. IEEE Transactions on Image Processing, 2000,9(3) : 329 - 339. 被引量:1
  • 9Truong T K, Jeng J H, Reed I S, et al. A fast encoding algorithm for fractal image compression using the DCT inner product[J ]. IEEE Transactions on Image Processing, 1999,9(4) : 529 - 535. 被引量:1
  • 10Hamzaoui R, Saupe D, Combining fractal image compression and vector quantition [ J ]. IEEE Transactions on Image Processing, 2000,9(2) : 134 - 142. 被引量:1

二级参考文献13

  • 1[1]Jacquin A E. Image coding based on a fractal theory of iterated contractive image transformations[J]. IEEE Transactions on Image Processing, 1992,1(1):18-30. 被引量:1
  • 2[2]Falconer K J. Fractal geometry:mathematical foundation and application[M]. New York: Wiley, 1990.90-120. 被引量:1
  • 3[3]Barnsley M F. Fractals everywhere[M]. New York:Academic Press, 1993.118-138. 被引量:1
  • 4[4]Fisher Y. Fractal image compression[J]. Fractals, 1994,2(3):321-329. 被引量:1
  • 5[5]Jacobs E W, Fisher Y, Boss R D. Image compression: A study of the iterated transform method[J]. Signal Processing, 1992,29:127-142. 被引量:1
  • 6[6]Christopher J W, Blake F B. On the performance of fractal compression with clustering[J]. IEEE Transactions on Image Processing, 1996,5(3):522-526. 被引量:1
  • 7[7]Chang H T,Kuo C J. Iteration-free fractal image coding based on efficient domain pool design[J]. IEEE Transactions on Image Processing, 2000,9(3):329-339. 被引量:1
  • 8[8]Truong T K, Jeng J H, Reed I S,et al. A fast encoding algorithm for fractal image compression using the DCT inner product[J]. IEEE Transactions on Image Processing, 1999,9(4):529-535. 被引量:1
  • 9[9]Hamzaoui R,Saupe D. Combining fractal image compression and vector quantition[J]. IEEE Transactions on Image Processing, 2000,9(2):134-142. 被引量:1
  • 10[10]Chang S K, Rin C K, Sang U L. A fractal vector quantizer for image coding[J]. IEEE Transactions on Image Processing, 1998,7(11):445-453. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部