摘要
讨论了RN上一类带临界增长的拟线性椭圆型方程-div(| u|p-2 u)=λ(x)um+uq-1的正解的存在性,其中2≤p<N,0<m<q-1,q=NPN-P.本文用没有(ps)条件的山路引理和Lions的集中紧性原理证明了当0<m<P-1时方程的能量泛函至少有两个临界点,从而方程至少有两个正解.
This paper discussed the problem (P)-div (|u|p-2u)=λ(x)um+uq-1,u≥0,x∈RNin RN,by Mountain Pass lemma without(ps) condition and Lion′s concentration compactness principle,it obtained at least two positive solutions for the problem(P) when 1<m+1<p and satisfied some other conditions,where q=NPN-P,0<m<q-1,2≤P<N.
出处
《广西大学学报(自然科学版)》
CAS
CSCD
2003年第2期109-113,共5页
Journal of Guangxi University(Natural Science Edition)