期刊文献+

亏基单纯形法的计算研究(英文)

A computational study of the simplex method with deficient bases
下载PDF
导出
摘要 报道了亏基单纯形法的计算研究结果 ,初步数值计算结果表明 ,在亏基情形下 ,利用 The purpose of writing this paper is to report a computational s tudy of the simplex algorithm with deficient bases. Our preliminary computatio nal implementation shows that Harris′ rule, which has performed well in convent ional simplex method, has not outperformed conventional rules in simplex algorit hm with deficient bases.
作者 李炜 胡幼予
出处 《黄冈师范学院学报》 2003年第3期7-11,共5页 Journal of Huanggang Normal University
基金 湖北省教育厅重点科研项目基金 ( 0 0 BB0 1)资助
关键词 亏基 单纯形法 计算研究 数值计算 Harris规则 线性规划 linear programming simplex method deficient basis Harris′ row selection rule
  • 引文网络
  • 相关文献

参考文献13

  • 1[1]Dantzig G B. Programming in a linear strcture[M]. Washington D C:USAF,1948. 被引量:1
  • 2[2]Dantzig G B. Programming of interdependent activities[J]. II,Mathematical model,Ecomometrica,1949,17(3):200~211. 被引量:1
  • 3[3]Chanes A. Optimality and degemeracy in linear programming[J].Econometria,1952, 20: 160~170. 被引量:1
  • 4[4]Dantzig G B. Orden A, Wolfe P. The generalized simplex methodfor minimizing a linear form under linear inequality restraints[J]. Pacific Journal of Math,1955,5:183~195. 被引量:1
  • 5[5]Harris P M J. Pivot selection methods of the Devex LP code[J]. Mathematical Programming,1973,5:1~28. 被引量:1
  • 6[6]Jeroslow R G. The simplex algorithm with the pivot rule of maximizingcriterion improvement[J]. Discr Math,1973, 4:317~321. 被引量:1
  • 7[7]Bland R G. New finite pivoting rules for the simplex method[J]. Math OR,1977, 2: 103~107. 被引量:1
  • 8[8]Chang Y Y. Least index resolution of degeneracy in linearcomplementarily problems[J]. Technical Report., Department of OR,Stratford University, Stanford, CA, 1979:79~84. 被引量:1
  • 9[9]Terlaky T. A convergent crises-cross method[J]. Math. Oper. Und Sta.Ser. Optimization., 1985,16(5):683~690. 被引量:1
  • 10[10]Forrest J J H, Goddard D. Steepest-edge simplex algorithms for linear programming[J]. Mathematical Programming,1992,57:341~374. 被引量:1

相关主题

;
使用帮助 返回顶部