期刊文献+

On the multiplicity of binary recurrences

On the multiplicity of binary recurrences
下载PDF
导出
摘要 Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations. Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations.
作者 董晓蕾 沈灏
机构地区 Dept.of Mathematics
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第2期183-189,共7页 哈尔滨工业大学学报(英文版)
基金 SonsoredbythePostdoctoralScienceFoundationofChina(2001)andtheNationalNaturalScienceFoundationofChina(GrantNo .60 0 72 0 18)
关键词 binary recurrences diophantine equations MULTIPLICITIES Lucas and Lehmer sequences primitive divisors cryptographic problems 丢番图方程 卢卡斯序列 二重循环 多样性 数论
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部