摘要
Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations.
Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations.
基金
SonsoredbythePostdoctoralScienceFoundationofChina(2001)andtheNationalNaturalScienceFoundationofChina(GrantNo .60 0 72 0 18)