期刊文献+

液流通过节流孔的惯性长的数值研究 被引量:9

Numerical analysis of inertial length for transient flow through a pipe orifice
下载PDF
导出
摘要 该文对初始稳定流开始的液流通过节流孔的过渡过程进行了数值解析计算。压力差为阶跃变化的情况下数值计算结果说明了收缩部的断面积的时间变化减少了收缩部的惯性效果。流量变化时收缩部的断面积也变化 ,而收缩部的平均流速保持一定 ,所以收缩部的惯性对系统的动特性没有什么影响 ,为了迅速地对流量的动特性进行仿真 ,本文提出了简单易算的等效惯性长公式。理论模型和数值计算结果一致。 The transient flow through a pipe orifice starting from an initial steady flow has been studied via numerical analysis. Time dependent calculation for a suddenly imposed pressure gradient has shown that variation of the cross sectional area reduces inertial effect in the contraction flow region. The flow rate change results in the variation of the cross sectional area of the contraction flow region, while the mean velocity in the contraction region remains constant, so the inertia of contraction flow region has little influence upon the dynamic behavior of the system. In order to simulate the dynamic behavior of the flow rate rapidly, this paper gives a simple formula equivalent inertial length. The theoretical model shows a good agreement with result from numerical analysis.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2003年第3期302-305,共4页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金 ( 6 0 0 74 0 32 )
关键词 液流 节流孔 惯性长 收缩部 惯性效果 数值研究 液压控制元件 液压控制系统 contraction flow region transient state inertial effect inertial length
  • 相关文献

参考文献4

  • 1梅里特H F著 陈燕庆译 顾瑞龙校.液压控制系统[M].北京:科学出版社,1978.. 被引量:1
  • 2金忠青编著..N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989:400.
  • 3FUNIK J E, WOOD D J and CHAO S P. The transient response of orifices and very short lines, trans[J].ASME, J. Basic Eng., 1972, 94(2): 483. 被引量:1
  • 4HAYASE T, HUMPHREY J A C and GREIF R. A consistently formulated QUICK Scheme for fast and stable convergence using finite-volume iterative calculation procedures[J]. J. Comput. Phys., 1992, 98. 被引量:1

同被引文献31

  • 1程耕国,程平,李受人.节流管孔流动参数与雷诺数关系的数值研究[J].计算机工程与设计,2005,26(3):575-576. 被引量:7
  • 2霍雅琴,骆德渊,伍瑾斐,李进松.变量化分析在传动滚筒的结构设计中的应用[J].微计算机信息,2006,22(02X):81-82. 被引量:6
  • 3李受人,程耕国.液压流通过节流孔的过渡过程的仿真研究[J].武汉理工大学学报,2007,29(4):129-131. 被引量:2
  • 4Gosman A D, Vlachos N S, Whitelaw J H. Low Reynolds-number pipe flow in the vicinity of three-dimensional obstacles[J].Journal Mechanical Engineering Science, 1979, 21 (5):335-343. 被引量:1
  • 5Keith T G,James E A John.Calculated orifice plate discharge coefficients at low reynolds numbers[J].Trans ASME,1977,99 (2):424-425. 被引量:1
  • 6Sumita T. CFD analysis of flow through a spool valve[J]. Journal of the Japan Hydraulics & Pneumatics Society, 1991, 23 (2):138-142. 被引量:1
  • 7Funk J E, Wood D J, Chao S P. The transient response of orifices and very short lines[J]. Trans ASME, Basic Eng, 1972, 94(2):483. 被引量:1
  • 8J E Funk, D J Wood, S P Chao The Transient Response of Orifices and Very Short Lines[J]. Trans of the ASME,Jourhal Basic Engineering, 1972,94(2): 483-491. 被引量:1
  • 9T Sumita.CFD Analysis of Flow through a Spool Valve[J].Journal of the Japan Hydraulics & Pneumatics Society,1991,23(2):138-142. 被引量:1
  • 10T Hayase, J A C Humphrey and R Greif. A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures[J]. J Comput. Phys.,1992, 98(1):108. 被引量:1

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部