期刊文献+

数学形态学在昆虫分类学上的应用研究.Ⅲ.在科阶元上的应用研究 被引量:31

Use of math-morphological features in insect taxonomy. Ⅲ. At the family level
下载PDF
导出
摘要 在科分类阶元上对半翅目、鳞翅目和鞘翅目 8个科的 2 3种昆虫图像中提取的昆虫面积、周长等 11项数学形态特征进行了统计分析。结果表明 ,在科的阶元上 11项特征可靠性大小依次为 (似圆度、偏心率 ) >(面积、周长、横轴长、球状性 ) >(纵轴长、圆形性 ) >(形状参数、叶状性 ) >亮斑数。从数学形态学角度出发 ,夜蛾科等 3个科的亲缘关系远近为夜蛾科与粉蝶科 >大蚕蛾科与粉蝶科 >夜蛾科与大蚕蛾科 ;鳃金龟等 3科的亲缘关系远近为鳃金龟科与天牛科、丽金龟科与天牛科 >鳃金龟科与丽金龟科。 Statistical analysis of 11 math-morphological feature (MMF) (such as area, perimeter, etc.) from images of 23 species of insects of the Pentatomidae, Coreidae, Noctuidae, Saturniidae, Pieridae, Melolonthidae Rutelidae and Cerambycidae families indicates that the ranked reliability of MMF in the identification of insect families is, from high to low: (roundness, eccentricity)>(area, perimeter, X-length, sphericity)>(Y-length, circularity)>(form factor, lobation)>hole number. From the perspective of mathematical morphology, the kinship between the Nuctuidae, Saturniidae and Pieridae can be ranked as follows: Nuctuidae and Pieridae> Saturniidae and Pieridae> Nuctuidae and Saturniidae. Kinship between the Melolonthidae, Rutelidae and Cerambycidae can be ranked as follows: Melolonthidae and Cerambycidae> Rutelidae and Cerambycidae> Melolonthidae and Rutelidae.
出处 《昆虫学报》 CAS CSCD 北大核心 2003年第3期339-344,共6页 Acta Entomologica Sinica
基金 国家"8 6 3"项目 ( 86 3- 30 6 - ZD0 5- 0 2- 0 3) 国家自然科学基金项目 ( 30 2 70 16 8)
关键词 数学形态特征 昆虫分类 计算机视觉技术 科阶元 math-morphological feature (MMF) insect classification computer vision technology family
  • 相关文献

参考文献2

二级参考文献18

  • 1章毓晋.图像处理和分析[M].北京:清华大学出版社,1997.. 被引量:3
  • 2Baxes G A, 1994. Digital Image Processing Principle and Applications. New York: John Wiley & Sons Inc. 被引量:1
  • 3Cui Q, 1996. Mathematical Image Process Technology and Implication. Beijing:Electronic Industry Press.[崔矻,1996.数字图像处理技术与应用北京:电子工业出版社] 被引量:1
  • 4Giribet G, Edgecombe G D, Wheeler W C, 2001. Arthropod phylogeny based on eight molecular loci and morphology, Nature, 413 (13): 157- 161. 被引量:1
  • 5Smith J B, 2000. Computer vision. Computer Vision Image Understand, 79:347 - 392. 被引量:1
  • 6Liu J D, 1996a. The expert system for identification of Tortricinae ( Lepidoptera) using image analysis of venation. Entomologia Sinica , 3 ( 1 ): 1-8. 被引量:1
  • 7Liu J D, 1996b. How to construct the expert system for species identification using venation of Tortricinae (Lepidoptera). Entomologia Sinica, 3(2): 133 - 137. 被引量:1
  • 8Ma S D, Zhang Z Y, 1998. Computer Vision Technology. Beijing: Science Press.[马颂德,张正友,1998.计算机视觉技术.北京:科学出版社] 被引量:1
  • 9Parker J R, 1996. Algorithms for Image Processing and Computer Vision.New York: John Wiley & Sons. 被引量:1
  • 10Boyle R D, Thomas R C, 1988. Computer Vision: A First Course. Oxford:Blackwell Scientific. 被引量:1

共引文献67

同被引文献304

引证文献31

二级引证文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部