期刊文献+

基于奇异值分解的中文Ontology自动学习技术 被引量:1

Automated Chinese Ontology Learning Technology Based on Singular Value Decomposition
下载PDF
导出
摘要 语义Web是一个美好的构想,Ontology在语义Web中起着举足轻重的作用,它不仅能为人类用户而且能为软件agent提供从语法层次到语义层次上的互操作性。目前Web上主要是各种布局的HTML文档,未来的语义Web页面将是各种领域Ontology的实例以及到其它实例上的链接,因此语义Web的成功强烈依赖于Ontology的增殖,方便快捷地构造各领域Ontologies是实现语义Web的关键。该文提出一种基于奇异值分解的中文Ontology自动学习技术,这种技术的特点是其简易性以及准确的数学理论基础。 Semantic Web is a beautiful blueprint, Ontologies are set to play a key role in the semantic Web, It can provide interoperability from syntactic level to semantic level not only for human user but also for software agents. Todays Web is full of HTML documents of different layout, The future semantic Web will be full of instances of different domain ontologies. The Ontology instances will serve as the Web pages and will contain the links to other instances. Hence, the success of the semantic Web depends strongly on the proliferation of ontologies, cheap and fast construction of domain-specific ontologies is crucial for realizing the semantic Web. The paper proposes an automated Chinese Ontology learning technology based on singular value decomposition,which has the feature of simplicity and the basis on a fairly precise mathematical foundation.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第9期137-139,共3页 Computer Engineering
基金 总装"十五"预研基金资助项目
关键词 语义WEB ONTOLOGY Ontology学习 奇异值分解 Semantic Web Ontology Ontology learning SVD(Singular Value Decomposition)
  • 相关文献

参考文献6

  • 1王建芬,曹元大.支持向量机在大类别数分类中的应用[J].北京理工大学学报,2001,21(2):225-228. 被引量:35
  • 2Omelayenko B. Learaing of Ontologies for the Web: the Analysis of Existent Approaches. In Proceedings of the International Workshop on Web Dynamics Held in conj. with the 8th International Conference on Database Theory (ICDT01), London, UK, 2001-01-03. 被引量:1
  • 3Maedche A, Staab S, Learning Ontologies for the Semantic Web.SemWeb, 2001. 被引量:1
  • 4Omelayenko B. Machine Learning for Ontology Learning. Report for the Course,IT3 Knowledge Acquisition and Sharing, at the International Jyvaskyla Summer School, Jyvaskyla, Finland,2000-08. 被引量:1
  • 5Faurc D, Nedellec C, A Corpus-based Conceptual Clustering Method for Verb Frames and Ontology Acquisition. In L REC Workshop on Adapting Lcxical and Corpus Resources to Sublanguages and Applicalions, Granada, Spain, 1998. 被引量:1
  • 6Berry M W, Dumais S T, O'Brien G W. Using Linear Algebra for Intelligent Information Retrieval. SIAM Review, 1995, 37(4):573-595. 被引量:1

二级参考文献4

  • 1[1]Vapnik V. The nature of statistical learning theory[M]. New York: Springer Press, 1995. 被引量:1
  • 2[2]Osuna E E, Girosi F. Reducing the run-time complexity of support vector machines[Z]. ICPR'98, Brisbane, 1998. 被引量:1
  • 3[3]Cortes C,Vapnik V. Support vector networks[J]. Machine Learning,1995,20(2):273-297. 被引量:1
  • 4[4]Bennett K P. Decision tree construction via linear programming[Z]. The Midwest Artificial Intelligence and Cognitive Science Society Conference, Utica, 1992. 被引量:1

共引文献34

同被引文献3

  • 1Maedche A, Staab S. Learning Ontologies for the Semantic Web. SemWeb, 2001. 被引量:1
  • 2郭志红.元数据的多角度透视[Z].上海交通大学情报研究所,.. 被引量:1
  • 3雄辉.语意网[EB/OL].http://www.ws.org.tw 网路技术及语意网研究中心,. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部