期刊文献+

2-阶Jacobi-Courant代数

Two Order Jacobi-Courant Algebra
下载PDF
导出
摘要 在前人研究的基础上,本研究提出了李代数经过两次莱布尼兹代数的阿贝尔扩张仍为李代数的问题。首先,根据莱布尼兹代数的阿贝尔扩张的定义,得到李代数通过的阿贝尔扩张仍然为李代数。随后,对李代数进行阿贝尔扩张,定义了上的括号,并证明其为李代数。 In this paper,the problem that the Lie algebra which is still a Lie algebra through twice abelian extension of Leibniz algebra is proposed based on the previous studies. Firstly,according to the definition of the abelian extension of Leibniz algebra,we can obtain that the abelian extension of Lie algebra by is still a Lie algebra. And then we obtain the extension of Lie algebra and define a bracket on the extension. Moreover we can prove that the abelian extension of Leibniz algebra is still a Lie algebra.
出处 《南昌航空大学学报(自然科学版)》 CAS 2016年第1期28-31,共4页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 国家自然科学基金(11126338 11461047 11201218)
关键词 李代数 莱布尼兹代数的表示 莱布尼兹代数的阿贝尔扩张 正合序列 Lie algebra the representation of the Leibniz algebra the abelian extension of Leibniz algebra exact sequence
  • 相关文献

参考文献11

  • 1Zhang-Ju Liu,Alan Weinstein,Ping Xu.Manin triples for Lie bialgebroids. Journal of Differential Geometry . 1997 被引量:1
  • 2Fialowski A,Mihálka Zs.Representations of Leibniz Algebras. Algebras&Representation Theory . 2015 被引量:1
  • 3Rotman J J.Advanced modern algebra. . 2004 被引量:1
  • 4Loday,J.-L.Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Ens. Math . 1993 被引量:1
  • 5John C. Baez,Alissa S. Crans.Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ . 2004 被引量:1
  • 6BI YanHui1 & SHENG YunHe2,3 1Department of Mathematics and LMAM, Peking University, Beijing 100871, China,2School of Mathematics, Jilin University, Changchun 130012, China,3School of Mathematics, Dalian University of Technology, Dalian 116024, China.On higher analogues of Courant algebroids[J].Science China Mathematics,2011,54(3):437-447. 被引量:4
  • 7贺龙光著..辛几何与泊松几何引论[M].北京:首都师范大学出版社,2001:301.
  • 8J.M. Casas,E. Faro,A.M. Vieites.??Abelian extensions of leibniz algebras(J)Communications in Algebra . 1999 (6) 被引量:1
  • 9Jean-Louis Loday,Teimuraz Pirashvili.??Leibniz Representations of Lie Algebras(J)Journal of Algebra . 1996 (2) 被引量:1
  • 10Jean-Louis Loday,Teimuraz Pirashvili.??Universal enveloping algebras of Leibniz algebras and (co)homology(J)Mathematische Annalen . 1993 (1) 被引量:1

二级参考文献26

  • 1John C. Baez,Alexander E. Hoffnung,Christopher L. Rogers.Categorified Symplectic Geometry and the Classical String[J] ,2010 被引量:1
  • 2Dmitry Roytenberg,Alan Weinstein.Courant Algebroids and Strongly and Strongly Homotopy Lie Algebras[J] ,1998 被引量:1
  • 3Rupak Chatterjee,Leon Takhtajan.Aspects of classical and quantum Nambu mechanics[J] ,1996 被引量:1
  • 4Rupak Chatterjee.Dynamical symmetries and Nambu mechanics[J] ,1996 被引量:1
  • 5Leon Takhtajan.On foundation of the generalized Nambu mechanics[J] ,1994 被引量:1
  • 6Chen Z,Liu Z J.Omni-Lie algebroids. Journal of Applied Geophysics . 2010 被引量:1
  • 7Chen Z,Liu Z J,Sheng Y H.E-Courant algebroids. International Mathematics Research Notices . 2010 被引量:1
  • 8Grabowski J,Marmo G.On Filippov algebroids and multiplicative Nambu-Poisson structures. Di?erential Geom Appl . 2000 被引量:1
  • 9Gualtieri M.Generalized complex geometry. . 被引量:1
  • 10Ibez R,de León M,Marrero J, et al.Dynamics of generalized Poisson and Nambu-Poisson brackets. Journal of Mathematical Physics . 1997 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部