期刊文献+

Synthesis and Characterization of a Silica-Based Drug Delivery System for Spinal Cord Injury Therapy 被引量:1

下载PDF
导出
摘要 Acute inflammation is a central component in the progression of spinal cord injury(SCI).Anti-inflammatory drugs used in the clinic are often administered systemically at high doses,which can paradoxically increase inflammation and result in drug toxicity.A cluster-like mesoporous silica/arctigenin/CAQK composite(MSN-FC@ARCG)drug delivery system was designed to avoid systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord.In this nanosystem,mesoporous silica was modified with the FITC fluorescent molecule and CAQK peptides that target brain injury and SCI sites.The size of the nanocarrier was kept at approximately 100 nm to enable penetration of the blood–brain barrier.Arctigenin,a Chinese herbal medicine,was loaded into the nanosystem to reduce inflammation.The in vivo results showed that MSN-FC@ARC-G could attenuate inflammation at the injury site.Behavior and morphology experiments suggested that MSN-FC@ARC-G could diminish local microenvironment damage,especially reducing the expression of interleukin-17(IL-17) and IL-17-related inflammatory factors,inhibiting the activation of astrocytes,thus protecting neurons and accelerating the recovery of SCI.Our study demonstrated that this novel,silica-based drug delivery system has promising potential for clinical application in SCI therapy. Acute inflammation is a central component in the progression of spinal cord injury(SCI).Anti-inflammatory drugs used in the clinic are often administered systemically at high doses,which can paradoxically increase inflammation and result in drug toxicity.A cluster-like mesoporous silica/arctigenin/CAQK composite(MSN-FC@ARCG)drug delivery system was designed to avoid systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord.In this nanosystem,mesoporous silica was modified with the FITC fluorescent molecule and CAQK peptides that target brain injury and SCI sites.The size of the nanocarrier was kept at approximately 100 nm to enable penetration of the blood–brain barrier.Arctigenin,a Chinese herbal medicine,was loaded into the nanosystem to reduce inflammation.The in vivo results showed that MSN-FC@ARC-G could attenuate inflammation at the injury site.Behavior and morphology experiments suggested that MSN-FC@ARC-G could diminish local microenvironment damage,especially reducing the expression of interleukin-17(IL-17) and IL-17-related inflammatory factors,inhibiting the activation of astrocytes,thus protecting neurons and accelerating the recovery of SCI.Our study demonstrated that this novel,silica-based drug delivery system has promising potential for clinical application in SCI therapy.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期61-80,共20页 纳微快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.31670969,51302089,and 31571030) the Fundamental Research Funds for the Central Universities(No.21617428) Key Program of Traditional Chinese Medicine of Guangdong Province(No.20173018) The Science and Technology Program of Jiangmen City of China(No.2017A2004) Natural Science Foundation of Guangdong Province(No.2018A030313576) Science and Technology Program of Guangzhou(No.201803010001)
  • 相关文献

参考文献1

二级参考文献5

共引文献4

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部