期刊文献+

基于PDE和几何曲率流驱动扩散的图像分析与处理 被引量:20

A Survey-Image Analysis and Processing Using PDE and Geometry Curvature-Driven Diffusion
下载PDF
导出
摘要 本文介绍由变分优化模型导出的偏微分方程(PDEs)模型与几何曲率流驱动扩散在图像恢复方面的应用,以及多种非线性异质扩散模型,讨论了PDEs模型在图像分析与处理方面的优点。理论与实验结果表明,要恢复得到高质量的图像,PDEs模型的利用是极为必要的。文中还介绍了求解PDEs模型的数值方案。其中,曲率计算是一个关键问题,其结果直接参与自适应扩散的控制。详细总结了基于有限差分和水平集方法,求解藕合非线性异质扩散模型方程的数值方案。追求高质量图像、高精度计算方法、降低计算复杂性是本文处理方法不断进步的发展动力。 In this paper, the evolution of partial differential equations (PDEs) and curvature driven flows(CDFs) for image restoration in computer vision and pattern recognition has been introduced which usually originate from variation models. Together with PDEs and CDFs, several nonlinear anisotropic diffusion models have been developed for noisy removal and image enhancement, which are very influential in 2D or volume image processing. The advantages of PDEs models are discussed which convince one that PDEs' method is indispensable for high quality regardless of heavy computational load. Miscellaneous numerical schemes are employed to solve PDEs, such as finite, difference, multigrid method, and finite element method. Curvature calculation is the key action for every numerical scheme. A detail numerical scheme for the couple nonlinear anisotropic equations has been concluded mainly based on finite difference and level-set methods. High quality and precision with less computational load is everlasting pursuit.
出处 《数学进展》 CSCD 北大核心 2003年第3期285-294,共10页 Advances in Mathematics(China)
基金 中国科学院知识创新工程重大方向项目(KZXCX2-309) 国家自然科学基金(19471006)
关键词 偏微分方程 几何曲率流驱动扩散 图像分析 图象处理 非线性扩散方程 滤噪 变分优化法 盲图像恢复问题 耦合方程 边缘检测 水平集方法 nonlinear diffusion equation image denoising and enhancement edge detec- tion level-set multigrid anosotropic diffusion
  • 相关文献

参考文献45

  • 1胡健伟 汤怀民.微分方程数值方法[M].北京:科学出版社,2000.165-240. 被引量:3
  • 2高鑫,刘来福.基于水平集曲率的图像滤噪与增强[J].北京师范大学学报(自然科学版),2001,37(1):5-9. 被引量:3
  • 3高鑫,刘来福.基于PDE模型的图像处理方法[J].数学的实践与认识,2001,31(2):206-210. 被引量:7
  • 4高鑫,刘来福.基于多尺度曲率植物叶片特征提取[J].生物数学学报,2003,18(4):461-466. 被引量:5
  • 5Acton S T.Multierid anisotrovic diffusion [J]. IEEE Trans, on Image Processing, 1998, 7(3): 280-290,. 被引量:1
  • 6Adorf H M. Hubble space telescope image restoration in its fourth year [J], Inverse Problem, 1995, 11:639-653. 被引量:1
  • 7Alvarez L, Guichard F, Lions P L and Morel J M. Axioms and fundamental equation of image processing[J]. Archive for Rational Mechanics and Analysis, 1993, 123: 199-257. 被引量:1
  • 8Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion Ⅱ[J]. SIAM J. Numerical Analysis, 1992, 29(3): 845-866. 被引量:1
  • 9Barcelos C A Z, Chen Y. Heat flows and related minimization problem in image restoration [J]. Computers and Mathematics with Application, 2000, 39:81-97. 被引量:1
  • 10Bose P, Chen Y. On the Incorporation of time-delay regularization into curvature-based diffusion [Z].Preprinted. 被引量:1

二级参考文献22

  • 1郭宇春,匡锦瑜.一种纹理图像分割的松弛算法[J].北京师范大学学报(自然科学版),1994,30(1):60-66. 被引量:6
  • 2华东师范大学 上海师范学院合编.种子植物属种检索表[M].北京:人民教育出版社,1980.. 被引量:2
  • 3[1]Fischl B, Schwartz E L. Adaptive nonlocal filtering: A fast alternative to anisotropic diffusion for image enhancement. IEEE Trans on PAMI, 1999, 21:42. 被引量:1
  • 4[2]Hamza A B, Luque-Escamilla P L, Aroza J M, et al. Removing noise and preserving details with relaxed median filters. J of Mathematical Imaging and Vision, 1999, 11:161. 被引量:1
  • 5[3]Nitzberg M, Shiota T. Nonlinear image filtering with edge and corner enhancement. IEEE Trans on PAMI, 1992, 14(8):826~833. 被引量:1
  • 6[4]Hummel A. Representations based on zero-crossing in scale-space. Fischler M, Firschein O. eds, Readings in Computer Vision: Issues, problems, Principles and Paradigms. Los Angoles, Calif:Morgan Kaufmann, 1986. 被引量:1
  • 7[5]Koenderink J. The structure of image. Biological Cybernetics, 1984, 50:363~370. 被引量:1
  • 8[6]Perona P, Malik J. Scale Space and Edge Detection Using Anisotropic Diffusion. Proc IEEE Workshop Computer Vision, Miami, Fla., 1987,16~27. 被引量:1
  • 9[7]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans PAMI, 1990,12(7):629. 被引量:1
  • 10[8]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithm. Physica D, 1992, 60:259~268. 被引量:1

共引文献14

同被引文献228

引证文献20

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部