期刊文献+

Doo-Sabin曲面NC刀具的并行轨迹计算 被引量:6

A Parallel Method for Generating NC Tool Paths of Doo-Sabin Surfaces
下载PDF
导出
摘要 Doo Sabin曲面是对多边形控制网格进行递归细分的极限曲面 利用Doo Sabin曲面具有的逐步逼近的多分辨率特性和误差公式 ,根据加工误差确定控制网格的细分次数 ,并以此代替目标曲面进行粗加工刀具轨迹计算 ,从而合理简化了加工细节 ,提高了粗加工效率 另外 ,改进了传统的G Buffer技术 ,提出了能统一应用于大型工件粗加工和精加工的S Buffer算法 进一步分析了S Buffer数据的相关性 ,采用平均加权响应时间为性能指标 ,设计了抢先式的动态负载平衡策略 ,基于MPI实现了S Doo Sabin surfaces are the limits of recursively refined polyhedral meshes The recursion depth n of a Doo Sabin surface is estimated according to the error equation Then the polyhedral mesh after n steps of subdivision is used as a substitute for the limit surface during rough machining to simplify the tool paths The traditional G Buffer method is extended to a strip buffer method (called S Buffer) to generate NC tool paths for objects of large size Furthermore, we analyze the locality of S Buffer, adopt the weighted response time as a performance index, and develop a preemptive and dynamic task assignment and load balance strategy Thus we effectively parallelize S Buffer based on the message passing interface(MPI)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第5期604-609,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金 (60 2 730 13) 和高等学校博士点基金(2 0 0 10 0 0 30 48)
关键词 Doo-Sabin曲面 数控刀具 数控加工 NC刀具 并行轨迹计算 CAD CAM 自由曲面造型 numerical control machining subdivision surface S Buffer parallel computation
  • 相关文献

参考文献7

  • 1Doo D, et al. Behavior of recursive division surfaces near extraordinary points [ J ] . Computer-Aided Design, 1978, 10(6) : 356-360. 被引量:1
  • 2WANG Huawei , GUAN Youjiang and QIN Kaihuai(1. Department of Computer Science and Technology,2. Department of Precision Instrument and Mechanics, Tsinghua University, Beijing 100084, China).Error estimate for Doo-Sabin surfaces[J].Progress in Natural Science:Materials International,2002,12(9):695-700. 被引量:4
  • 3Takafumi Saito, Tokiichiro Takahashi. NC machining with Gbuffer method[J ] . Computer Graphics, 1991, 25 (4) : 207-216. 被引量:1
  • 4U Reif. A unified approach to subdivision algorithms near extraordinary vertices[J]. Computer-Aided Geometric Design,1995, 12(2) : 153- 174. 被引量:1
  • 5Qin Kaihuai, Wang Huawei. Eigen analysis and continuity of non-uniform Doo-Sabin surfaces[A]. In: Proceedings of Pacific Graphics'99, Soul, Korea, 1999. 179-196. 被引量:1
  • 6Qin Kaihuai, Wang Huawei. Continuity of non-uniform recursive subdivision surfaces[J]. Science in China (Series E),2000, 43(5): 461-472. 被引量:1
  • 7Wang Huawei, Qin Kaihuai. Precise evaluation of uniform Doo-Sabin subdivision surfaees[J ]. 被引量:1

二级参考文献12

  • 1Hartmut Prautzsch,Leif Kobbelt.Convergence of subdivision and degree elevation[J].Advances in Computational Mathematics.1994(1) 被引量:1
  • 2Lutterkort,D. et al.The distance between a uniform B-spline and its control polygon. http://www. cise. ufl. edu/research/tech-reports . 被引量:1
  • 3Qin Kaihuai,Wang H.Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces[].Proceeding of Pacific Graphics‘.1999 被引量:1
  • 4Zheng J, Sedeberg,,and Sabin M.Eigenanalysis of non-uniform Doo-Sabin surfaces[]..1997 被引量:1
  • 5Nairn,D. et al.Sharp, quantitative bounds on the distance between a polynomial piece and its Bezier control polygon[].Computer Aided Geometric Design.1999 被引量:1
  • 6Halstead M,Kass M,DeRose T.Efficient, Fair Interpolation Using Catmull-Clark Surfaces[].Computer Graphics.1993 被引量:1
  • 7Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[].Computer Graphics ProceedingsAnnual Conference SeriesACMSIGGRAPH.1998 被引量:1
  • 8Sederberg T W,Zheng J M,Swell D et al.Non-uniform recursive subdivision surfaces[].Computer Graphics.1998 被引量:1
  • 9REIF U.Best bounds on the approximation of polynomials and splines by their control structure[].Computer Aided Geometric Design.2000 被引量:1
  • 10Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[].Computer Aided Design.1978 被引量:1

共引文献3

同被引文献58

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部