摘要
Aspergillus ficuum was immobilized with sodium alginate, and decolourization of Reactive Brilliant Blue KN-R was studied on immobilized and free Aspergillus ficuum. The optimal preparation condition of the strain immobilization was obtained by the orthogonal test, it is sodium alginate 3%, CaCl_2 5%, wet mycelia 30 g/L, calcific time 8 h. It was found that the immobilized cells could effectively decolourize Reactive Brilliant Blue KN-R, the optimum temperature and pH were 33℃ and 5.0, respectively. The kinetics study of decolourization of immobilized cells showed that the decolourization of Aspergillus ficuum immobilized conformed to zero-order reaction model. The decolourization efficiency of immobilized cell compared with that of free cell in different physical conditions. Results showed that the decolourization of immobilized cells with mycelia had the best efficiency. The immobilized cells could be reused after the first decolourization.
Aspergillus ficuum was immobilized with sodium alginate, and decolourization of Reactive Brilliant Blue KN-R was studied on immobilized and free Aspergillus ficuum. The optimal preparation condition of the strain immobilization was obtained by the orthogonal test, it is sodium alginate 3%, CaCl_2 5%, wet mycelia 30 g/L, calcific time 8 h. It was found that the immobilized cells could effectively decolourize Reactive Brilliant Blue KN-R, the optimum temperature and pH were 33℃ and 5.0, respectively. The kinetics study of decolourization of immobilized cells showed that the decolourization of Aspergillus ficuum immobilized conformed to zero-order reaction model. The decolourization efficiency of immobilized cell compared with that of free cell in different physical conditions. Results showed that the decolourization of immobilized cells with mycelia had the best efficiency. The immobilized cells could be reused after the first decolourization.