期刊文献+

基于混合神经网络的一般动态系统MT方法建模 被引量:1

The model of general dynamical systems by MT based on composite neural networks
下载PDF
导出
摘要 利用MT理论对一般动态系统的分解提出了混合神经网络建模的方法 ,混合神经网络模型采用动态神经网络和静态神经网络级联的方式 ,结合了二者的优点 ,克服了各自的不足之处 .探讨了采用混合神经网络对一般动态系统建模的方法 .研究结果表明 ,此方法对于一般动态系统 ,特别是复杂的非线性动态系统的建模有其独特的优点 . Based on mathematical general systems theory, a general dynamical system can be divided into two parts. The composite neural networks was used to model general dynamical systems. The composite neural networks were composed of recurrent neural networks and multiplayer feedforward neural one. It has the advantages of the two networks. The methods on how to use this kind of neural networks to model a general dynamical system were discussed. The simulation results showed that this method had its own advantage in modeling general dynamical system, especially in modeling complex non-linear dynamical system.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第5期31-33,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目 (79970 0 2 5 )
关键词 一般动态系统 MT理论 混合神经网络 general dynamical system MT theory composite neural networks
  • 相关文献

参考文献4

  • 1Masarovic M D, Takahara. General systems theory:mathematical foundation. New York: Academic Press,1975. 被引量:1
  • 2Yamada T, Yabuta T. Dynamic system identification using neural networks. IEEE Trans. SMC, 1993,23(1): 204-211. 被引量:1
  • 3Narendre K S, Parthasarathy K. Identification and control of dynamic systems using neural networks. IEEE Trans., Neural Networks, 1990,1 ( 1 ) : 4-27. 被引量:1
  • 4Kosmatopoulas E B, Polycarpou M M, Christodoulou MA, et al. High-order neural network structures for identification of dynamical systems. IEEE Trans. Neural Networks, 1995, 6(2): 422-431. 被引量:1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部